These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 21549741)

  • 1. Effects of adaptation on the temporal envelope of amplitude-modulated flickering light.
    Okamoto Y; Nakagawa S
    Vision Res; 2011 Jun; 51(12):1372-5. PubMed ID: 21549741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual sensitivity and cortical response to the temporal envelope of amplitude-modulated flicker.
    Okamoto Y; Nakagawa S; Fujii K; Yano T
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2346-52. PubMed ID: 19884931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of MEG responses to the sinusoidal flicker and the envelope of amplitude-modulated flicker.
    Okamoto Y; Nakagawa S
    Neurosci Lett; 2011 Jan; 487(2):207-10. PubMed ID: 20969920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low frequency temporal modulation of light promotes a myopic shift in refractive compensation to all spectacle lenses.
    Crewther SG; Barutchu A; Murphy MJ; Crewther DP
    Exp Eye Res; 2006 Aug; 83(2):322-8. PubMed ID: 16579985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the detection mechanisms for symmetric and rectified flicker stimuli.
    Zele AJ; Vingrys AJ
    Vision Res; 2007 Sep; 47(21):2700-13. PubMed ID: 17825346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency dependency of temporal contrast adaptation in normal subjects.
    Hohberger B; Rössler CW; Jünemann AG; Horn FK; Kremers J
    Vision Res; 2011 Jun; 51(12):1312-7. PubMed ID: 21513728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the power spectrum of physiological finger tremor frequency with flickering light.
    Isokawa-Akesson M; Komisaruk BR
    J Neurosci Res; 1985; 14(3):373-80. PubMed ID: 4057289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of visual stimulation on blood oxygenation in the optic nerve head of miniature pigs: a pilot study.
    Ferrez PW; Chamot SR; Petrig BL; Pournaras CJ; Riva CR
    Klin Monbl Augenheilkd; 2004 May; 221(5):364-6. PubMed ID: 15162281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction in the motion coherence threshold for the same direction as that perceived during adaptation.
    Hirahara M
    Vision Res; 2006 Dec; 46(28):4623-33. PubMed ID: 17092532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing in the probed-sinewave paradigm is likely retinal.
    Wolfson SS; Graham N
    Vis Neurosci; 2001; 18(6):1003-10. PubMed ID: 12020074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of noise on the contrast detection threshold in visual perception.
    Sasaki H; Todorokihara M; Ishida T; Miyachi J; Kitamura T; Aoki R
    Neurosci Lett; 2006 Nov; 408(2):94-7. PubMed ID: 16996210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid sensitivity changes on flickering backgrounds: tests of models of light adaptation.
    Wu S; Burns SA; Elsner AE; Eskew RT; He J
    J Opt Soc Am A Opt Image Sci Vis; 1997 Sep; 14(9):2367-78. PubMed ID: 9291607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying adaptation and fatigue effects in frequency doubling perimetry.
    Anderson AJ; McKendrick AM
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):943-8. PubMed ID: 17251498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced steady color shifts from temporally varying surrounds.
    D'Antona AD; Shevell SK
    Vis Neurosci; 2006; 23(3-4):483-7. PubMed ID: 16961984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual readaptation after flash exposure under scotopic conditions. A study using optokinetic nystagmus as an indicator of visual perception.
    Wang L
    Acta Ophthalmol Suppl (1985); 1994; (212):1-50. PubMed ID: 8205058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the degree of fluctuation on subjective preference for a 1 Hz flickering light.
    Soeta Y; Mizuma K; Okamoto Y; Ando Y
    Perception; 2005; 34(5):587-93. PubMed ID: 15991695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple processes mediate flicker sensitivity.
    Anderson AJ; Vingrys AJ
    Vision Res; 2001 Sep; 41(19):2449-55. PubMed ID: 11483176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of the retina at low temporal frequencies.
    Burns SA; Elsner AE
    J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):667-72. PubMed ID: 8627424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation and visual discomfort from flicker.
    Yoshimoto S; Jiang F; Takeuchi T; Wilkins AJ; Webster MA
    Vision Res; 2019 Jul; 160():99-107. PubMed ID: 31091424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flicker adaptation can be explained by probability summation between ON- and OFF-mechanisms.
    Zele AJ; Vingrys AJ
    Clin Exp Ophthalmol; 2000 Jun; 28(3):227-9. PubMed ID: 10981806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.