BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21549762)

  • 21. A High-Content Larval Zebrafish Brain Imaging Method for Small Molecule Drug Discovery.
    Liu H; Chen S; Huang K; Kim J; Mo H; Iovine R; Gendre J; Pascal P; Li Q; Sun Y; Dong Z; Arkin M; Guo S; Huang B
    PLoS One; 2016; 11(10):e0164645. PubMed ID: 27732643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated, high-throughput, in vivo analysis of visual function using the zebrafish.
    Scott CA; Marsden AN; Slusarski DC
    Dev Dyn; 2016 May; 245(5):605-13. PubMed ID: 26890697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae.
    Richendrfer H; Pelkowski SD; Colwill RM; Créton R
    Neurotoxicol Teratol; 2012 Jul; 34(4):458-65. PubMed ID: 22579535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput screening of zebrafish embryos using automated heart detection and imaging.
    Spomer W; Pfriem A; Alshut R; Just S; Pylatiuk C
    J Lab Autom; 2012 Dec; 17(6):435-42. PubMed ID: 23053930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavioral Profiling of Zebrafish (Danio rerio) Larvae Following Teratogen Exposure.
    Valentim AM
    Methods Mol Biol; 2018; 1797():403-419. PubMed ID: 29896706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking zebrafish larvae in group--status and perspectives.
    Martineau PR; Mourrain P
    Methods; 2013 Aug; 62(3):292-303. PubMed ID: 23707495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral Profiling of Zebrafish (Danio rerio) Larvae: Activity, Anxiety, Avoidance, and Startle Response.
    Valentim AM
    Methods Mol Biol; 2024; 2753():421-446. PubMed ID: 38285357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated, high-throughput quantification of EGFP-expressing neutrophils in zebrafish by machine learning and a highly-parallelized microscope.
    Efromson J; Ferrero G; Bègue A; Doman TJJ; Dugo C; Barker A; Saliu V; Reamey P; Kim K; Harfouche M; Yoder JA
    PLoS One; 2023; 18(12):e0295711. PubMed ID: 38060605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies.
    Ingebretson JJ; Masino MA
    Front Neural Circuits; 2013; 7():109. PubMed ID: 23772207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zebrafish (Danio rerio) responds to the animated image of a predator: towards the development of an automated aversive task.
    Gerlai R; Fernandes Y; Pereira T
    Behav Brain Res; 2009 Aug; 201(2):318-24. PubMed ID: 19428651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish.
    Saverino C; Gerlai R
    Behav Brain Res; 2008 Aug; 191(1):77-87. PubMed ID: 18423643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish.
    Walker SL; Ariga J; Mathias JR; Coothankandaswamy V; Xie X; Distel M; Köster RW; Parsons MJ; Bhalla KN; Saxena MT; Mumm JS
    PLoS One; 2012; 7(1):e29916. PubMed ID: 22238673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2020 Sep; 12(8):211-220. PubMed ID: 32877926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.
    Guggiana-Nilo DA; Engert F
    Front Behav Neurosci; 2016; 10():160. PubMed ID: 27594828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput Screening in Larval Zebrafish Identifies Novel Potent Sedative-hypnotics.
    Yang X; Jounaidi Y; Dai JB; Marte-Oquendo F; Halpin ES; Brown LE; Trilles R; Xu W; Daigle R; Yu B; Schaus SE; Porco JA; Forman SA
    Anesthesiology; 2018 Sep; 129(3):459-476. PubMed ID: 29894316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of picrotoxin on zebrafish larvae behaviors: A comparison study with PTZ.
    Yang X; Lin J; Peng X; Zhang Q; Zhang Y; Guo N; Zhou S; Li Q
    Epilepsy Behav; 2017 May; 70(Pt A):224-231. PubMed ID: 28437751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated, high-throughput quantification of EGFP-expressing neutrophils in zebrafish by machine learning and a highly-parallelized microscope.
    Efromson J; Ferrero G; Bègue A; Doman TJJ; Dugo C; Barker A; Saliu V; Reamey P; Kim K; Harfouche M; Yoder JA
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization.
    Mirat O; Sternberg JR; Severi KE; Wyart C
    Front Neural Circuits; 2013; 7():107. PubMed ID: 23781175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated quantification of zebrafish somites based on PDE method.
    Lu J; Wu T; Liu T; Chen C; Zhao C; Yang J
    J Microsc; 2012 Nov; 248(2):156-62. PubMed ID: 22957990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.