These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21549762)

  • 41. A High-Throughput Zebrafish Screening Method for Visual Mutants by Light-Induced Locomotor Response.
    Gao Y; Chan RH; Chow TW; Zhang L; Bonilla S; Pang CP; Zhang M; Leung YF
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):693-701. PubMed ID: 26356340
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Doing the locomotion: Insights and potential pitfalls associated with using locomotor activity as a readout of the circadian rhythm in larval zebrafish.
    Wolter ME; Svoboda KR
    J Neurosci Methods; 2020 Jan; 330():108465. PubMed ID: 31634493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.
    Lin X; Wang S; Yu X; Liu Z; Wang F; Li WT; Cheng SH; Dai Q; Shi P
    Lab Chip; 2015 Feb; 15(3):680-9. PubMed ID: 25406521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination.
    Early JJ; Cole KL; Williamson JM; Swire M; Kamadurai H; Muskavitch M; Lyons DA
    Elife; 2018 Jul; 7():. PubMed ID: 29979149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Model of Excitotoxic Brain Injury in Larval Zebrafish: Potential Application for High-Throughput Drug Evaluation to Treat Traumatic Brain Injury.
    McCutcheon V; Park E; Liu E; Wang Y; Wen XY; Baker AJ
    Zebrafish; 2016 Jun; 13(3):161-9. PubMed ID: 27028704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simple and High-Throughput Rheotaxis Behavioral Assay for Zebrafish Larva.
    Tantry MSA; Harini VS; Santhakumar K
    Zebrafish; 2022 Jun; 19(3):114-118. PubMed ID: 35666213
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials.
    Liu R; Lin S; Rallo R; Zhao Y; Damoiseaux R; Xia T; Lin S; Nel A; Cohen Y
    PLoS One; 2012; 7(4):e35014. PubMed ID: 22506062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulation of locomotor activity in larval zebrafish during light adaptation.
    Burgess HA; Granato M
    J Exp Biol; 2007 Jul; 210(Pt 14):2526-39. PubMed ID: 17601957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs.
    Winter MJ; Redfern WS; Hayfield AJ; Owen SF; Valentin JP; Hutchinson TH
    J Pharmacol Toxicol Methods; 2008; 57(3):176-87. PubMed ID: 18337127
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantification of vestibular-induced eye movements in zebrafish larvae.
    Mo W; Chen F; Nechiporuk A; Nicolson T
    BMC Neurosci; 2010 Sep; 11():110. PubMed ID: 20815905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated phenotype pattern recognition of zebrafish for high-throughput screening.
    Schutera M; Dickmeis T; Mione M; Peravali R; Marcato D; Reischl M; Mikut R; Pylatiuk C
    Bioengineered; 2016 Jul; 7(4):261-5. PubMed ID: 27285638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The swimming plus-maze test: a novel high-throughput model for assessment of anxiety-related behaviour in larval and juvenile zebrafish (Danio rerio).
    Varga ZK; Zsigmond Á; Pejtsik D; Varga M; Demeter K; Mikics É; Haller J; Aliczki M
    Sci Rep; 2018 Nov; 8(1):16590. PubMed ID: 30410116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a vibrational startle response assay for screening environmental pollutants and drugs impairing predator avoidance.
    Faria M; Prats E; Novoa-Luna KA; Bedrossiantz J; Gómez-Canela C; Gómez-Oliván LM; Raldúa D
    Sci Total Environ; 2019 Feb; 650(Pt 1):87-96. PubMed ID: 30196226
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Early asymmetries in the behaviour of zebrafish larvae.
    Watkins J; Miklósi A; Andrew RJ
    Behav Brain Res; 2004 May; 151(1-2):177-83. PubMed ID: 15084433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Behavioral genetic approaches to visual system development and function in zebrafish.
    Neuhauss SC
    J Neurobiol; 2003 Jan; 54(1):148-60. PubMed ID: 12486702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robotic injection of zebrafish embryos for high-throughput screening in disease models.
    Spaink HP; Cui C; Wiweger MI; Jansen HJ; Veneman WJ; Marín-Juez R; de Sonneville J; Ordas A; Torraca V; van der Ent W; Leenders WP; Meijer AH; Snaar-Jagalska BE; Dirks RP
    Methods; 2013 Aug; 62(3):246-54. PubMed ID: 23769806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Response of zebrafish larvae to mild electrical stimuli: A 96-well setup for behavioural screening.
    Steenbergen PJ
    J Neurosci Methods; 2018 May; 301():52-61. PubMed ID: 29522780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A high-throughput assay for quantifying appetite and digestive dynamics.
    Jordi J; Guggiana-Nilo D; Soucy E; Song EY; Lei Wee C; Engert F
    Am J Physiol Regul Integr Comp Physiol; 2015 Aug; 309(4):R345-57. PubMed ID: 26108871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using the zebrafish photomotor response for psychotropic drug screening.
    Kokel D; Peterson RT
    Methods Cell Biol; 2011; 105():517-24. PubMed ID: 21951545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.