These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The circadian timekeeping system of Drosophila. Hardin PE Curr Biol; 2005 Sep; 15(17):R714-22. PubMed ID: 16139204 [TBL] [Abstract][Full Text] [Related]
4. Circadian clocks in crustaceans: identified neuronal and cellular systems. Strauss J; Dircksen H Front Biosci (Landmark Ed); 2010 Jun; 15(3):1040-74. PubMed ID: 20515741 [TBL] [Abstract][Full Text] [Related]
5. Regulating a circadian clock's period, phase and amplitude by phosphorylation: insights from Drosophila. Bae K; Edery I J Biochem; 2006 Nov; 140(5):609-17. PubMed ID: 17012288 [TBL] [Abstract][Full Text] [Related]
6. NEMO kinase contributes to core period determination by slowing the pace of the Drosophila circadian oscillator. Yu W; Houl JH; Hardin PE Curr Biol; 2011 May; 21(9):756-61. PubMed ID: 21514156 [TBL] [Abstract][Full Text] [Related]
7. Old and New Roles and Evolving Complexities of Cardiovascular Clocks. Xu Y; Pi W; Rudic RD Yale J Biol Med; 2019 Jun; 92(2):283-290. PubMed ID: 31249489 [TBL] [Abstract][Full Text] [Related]
8. Speed control: cogs and gears that drive the circadian clock. Zheng X; Sehgal A Trends Neurosci; 2012 Sep; 35(9):574-85. PubMed ID: 22748426 [TBL] [Abstract][Full Text] [Related]
9. Regulation of prokineticin 2 expression by light and the circadian clock. Cheng MY; Bittman EL; Hattar S; Zhou QY BMC Neurosci; 2005 Mar; 6():17. PubMed ID: 15762991 [TBL] [Abstract][Full Text] [Related]
10. Kinase and phosphatase: the cog and spring of the circadian clock. Mizoguchi T; Putterill J; Ohkoshi Y Int Rev Cytol; 2006; 250():47-72. PubMed ID: 16861063 [TBL] [Abstract][Full Text] [Related]
11. Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria. Naef F Mol Syst Biol; 2005; 1():2005.0019. PubMed ID: 16729054 [TBL] [Abstract][Full Text] [Related]
13. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Tanoue S; Krishnan P; Krishnan B; Dryer SE; Hardin PE Curr Biol; 2004 Apr; 14(8):638-49. PubMed ID: 15084278 [TBL] [Abstract][Full Text] [Related]
14. [Output pathways of the cyanobacterial circadian clock]. Taniguchi Y; Oyama T Seikagaku; 2009 Nov; 81(11):987-92. PubMed ID: 19999580 [No Abstract] [Full Text] [Related]
15. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926 [TBL] [Abstract][Full Text] [Related]
16. Molecular cogs of the insect circadian clock. Shirasu N; Shimohigashi Y; Tominaga Y; Shimohigashi M Zoolog Sci; 2003 Aug; 20(8):947-55. PubMed ID: 12951399 [TBL] [Abstract][Full Text] [Related]
17. Modeling circadian oscillations with interlocking positive and negative feedback loops. Smolen P; Baxter DA; Byrne JH J Neurosci; 2001 Sep; 21(17):6644-56. PubMed ID: 11517254 [TBL] [Abstract][Full Text] [Related]
19. Systems-level characterization of the kernel mechanism of the cyanobacterial circadian oscillator. Ma L; Ranganathan R Biosystems; 2014 Mar; 117():30-9. PubMed ID: 24444761 [TBL] [Abstract][Full Text] [Related]
20. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. Wu Y; Cao G; Pavlicek B; Luo X; Nitabach MN PLoS Biol; 2008 Nov; 6(11):e273. PubMed ID: 18986214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]