BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21550015)

  • 21. [Effect of lethal hyperoxia on pulmonary development and lung injury in neonatal rats].
    Zhu CP; Du J; Li QP; Feng ZC
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Jul; 26(7):945-8. PubMed ID: 16864083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early exposure to hyperoxia or hypoxia adversely impacts cardiopulmonary development.
    Ramani M; Bradley WE; Dell'Italia LJ; Ambalavanan N
    Am J Respir Cell Mol Biol; 2015 May; 52(5):594-602. PubMed ID: 25255042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.
    Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model.
    Namba F; Go H; Murphy JA; La P; Yang G; Sengupta S; Fernando AP; Yohannes M; Biswas C; Wehrli SL; Dennery PA
    PLoS One; 2014; 9(3):e90936. PubMed ID: 24599172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation.
    Yee M; Cohen ED; Domm W; Porter GA; McDavid AN; O'Reilly MA
    Am J Physiol Lung Cell Mol Physiol; 2018 May; 314(5):L846-L859. PubMed ID: 29345197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of rho-kinase inhibition on pulmonary hypertension, lung growth, and structure in neonatal rats chronically exposed to hypoxia.
    Ziino AJ; Ivanovska J; Belcastro R; Kantores C; Xu EZ; Lau M; McNamara PJ; Tanswell AK; Jankov RP
    Pediatr Res; 2010 Feb; 67(2):177-82. PubMed ID: 19858775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neonatal hyperoxia alters the host response to influenza A virus infection in adult mice through multiple pathways.
    Buczynski BW; Yee M; Martin KC; Lawrence BP; O'Reilly MA
    Am J Physiol Lung Cell Mol Physiol; 2013 Aug; 305(4):L282-90. PubMed ID: 23748535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth.
    Donda K; Zambrano R; Moon Y; Percival J; Vaidya R; Dapaah-Siakwan F; Luo S; Duncan MR; Bao Y; Wang L; Qin L; Benny M; Young K; Wu S
    PLoS One; 2018; 13(7):e0199927. PubMed ID: 29990355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term pulmonary and cardiovascular morbidities of neonatal hyperoxia exposure in mice.
    Menon RT; Shrestha AK; Reynolds CL; Barrios R; Shivanna B
    Int J Biochem Cell Biol; 2018 Jan; 94():119-124. PubMed ID: 29223466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pulmonary mechanics and structural lung development after neonatal hyperoxia in mice.
    Dylag AM; Haak J; Yee M; O'Reilly MA
    Pediatr Res; 2020 Jun; 87(7):1201-1210. PubMed ID: 31835269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
    Velten M; Heyob KM; Rogers LK; Welty SE
    J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen.
    Park MS; Rieger-Fackeldey E; Schanbacher BL; Cook AC; Bauer JA; Rogers LK; Hansen TN; Welty SE; Smith CV
    Pediatr Res; 2007 Dec; 62(6):652-7. PubMed ID: 17957151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia.
    Kunig AM; Balasubramaniam V; Markham NE; Seedorf G; Gien J; Abman SH
    Am J Physiol Lung Cell Mol Physiol; 2006 Nov; 291(5):L1068-78. PubMed ID: 16829629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.
    Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S
    Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung.
    Chetty A; Cao GJ; Severgnini M; Simon A; Warburton R; Nielsen HC
    Am J Physiol Lung Cell Mol Physiol; 2008 Oct; 295(4):L584-92. PubMed ID: 18658276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neonatal intermittent hypoxia persistently impairs lung vascular development and induces long-term lung mitochondrial DNA damage.
    Damianos A; Kulandavelu S; Chen P; Nwajei P; Batlahally S; Sharma M; Alvarez-Cubela S; Dominguez-Bendala J; Zambrano R; Huang J; Hare JM; Schmidt A; Wu S; Benny M; Claure N; Young K
    J Appl Physiol (1985); 2022 Nov; 133(5):1031-1041. PubMed ID: 36135955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-Wide Analysis of DNA Methylation in Hyperoxia-Exposed Newborn Rat Lung.
    Chen CM; Liu YC; Chen YJ; Chou HC
    Lung; 2017 Oct; 195(5):661-669. PubMed ID: 28689251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice.
    Nakanishi H; Morikawa S; Kitahara S; Yoshii A; Uchiyama A; Kusuda S; Ezaki T
    Med Mol Morphol; 2018 Sep; 51(3):166-175. PubMed ID: 29362947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia.
    Kandasamy J; Rezonzew G; Jilling T; Ballinger S; Ambalavanan N
    Am J Physiol Lung Cell Mol Physiol; 2019 Dec; 317(6):L740-L747. PubMed ID: 31432715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genipin attenuates hyperoxia-induced lung injury and pulmonary hypertension via targeting glycogen synthase kinase-3 β in neonatal rats.
    Li J; Shi J; Li P; Guo X; Wang T; Liu A
    Nutrition; 2019 Jan; 57():237-244. PubMed ID: 30196116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.