These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21550349)

  • 1. Probability of freezing in the freeze-avoiding beetle larvae Cucujus clavipes puniceus (Coleoptera: Cucujidae) from interior Alaska.
    Sformo T; McIntyre J; Walters KR; Barnes BM; Duman J
    J Insect Physiol; 2011 Aug; 57(8):1170-7. PubMed ID: 21550349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep supercooling, vitrification and limited survival to -100{degrees}C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae.
    Sformo T; Walters K; Jeannet K; Wowk B; Fahy GM; Barnes BM; Duman JG
    J Exp Biol; 2010 Feb; 213(3):502-9. PubMed ID: 20086136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the deep supercooling ability of an Alaskan beetle, Cucujus clavipes puniceus, via high throughput proteomics.
    Carrasco MA; Buechler SA; Arnold RJ; Sformo T; Barnes BM; Duman JG
    J Proteomics; 2012 Feb; 75(4):1220-34. PubMed ID: 22094879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapause.
    Bennett VA; Sformo T; Walters K; Tøien Ø; Jeannet K; Hochstrasser R; Pan Q; Serianni AS; Barnes BM; Duman JG
    J Exp Biol; 2005 Dec; 208(Pt 23):4467-77. PubMed ID: 16339867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the biochemical overwintering adaptations of Larval Cucujus clavipes puniceus, a nonmodel organism, via high throughput proteomics.
    Carrasco MA; Buechler SA; Arnold RJ; Sformo T; Barnes BM; Duman JG
    J Proteome Res; 2011 Oct; 10(10):4634-46. PubMed ID: 21923194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze tolerance in an arctic Alaska stonefly.
    Walters KR; Sformo T; Barnes BM; Duman JG
    J Exp Biol; 2009 Jan; 212(Pt 2):305-12. PubMed ID: 19112150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in macromolecular antifreeze levels in larvae of the darkling beetle, Meracantha contracta.
    Duman JG
    J Exp Zool; 1977 Jul; 201(1):85-92. PubMed ID: 886298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Siberian timberman Acanthocinus aedilis: a freeze-tolerant beetle with low supercooling points.
    Kristiansen E; Li NG; Averensky AI; Laugsand AE; Zachariassen KE
    J Comp Physiol B; 2009 Jul; 179(5):563-8. PubMed ID: 19153749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifreeze proteins in Alaskan insects and spiders.
    Duman JG; Bennett V; Sformo T; Hochstrasser R; Barnes BM
    J Insect Physiol; 2004 Apr; 50(4):259-66. PubMed ID: 15081818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling phylogenetic relations and biogeographic history within the Cucujus haematodes species group (Coleoptera: Cucujidae).
    Kadej M; Zając K; Gutowski JM; Jaworski T; Plewa R; Ruta R; Sikora K; Smolis A; Magoga G; Montagna M; Eckelt A; Birkemoe T; Bonacci T; Brandmayr P; Heibl C; Cizek L; Algis Davenis S; Fuchs L; Horák J; Kapla A; Kulijer D; Merkl O; Müller J; Noordijk J; Saluk S; Sverdrup-Thygeson A; Vrezec A; Kajtoch Ł
    Mol Phylogenet Evol; 2022 Aug; 173():107527. PubMed ID: 35577286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold tolerance and supercooling capacity in overwintering adults of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae).
    Soudi Sh; Moharramipour S
    Environ Entomol; 2011 Dec; 40(6):1546-53. PubMed ID: 22217772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods.
    Worland MR; Block W
    J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica.
    Elnitsky MA; Hayward SA; Rinehart JP; Denlinger DL; Lee RE
    J Exp Biol; 2008 Feb; 211(Pt 4):524-30. PubMed ID: 18245628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice nucleation and antinucleation in nature.
    Zachariassen KE; Kristiansen E
    Cryobiology; 2000 Dec; 41(4):257-79. PubMed ID: 11222024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.
    Vu HM; Duman JG
    J Exp Biol; 2017 Aug; 220(Pt 15):2726-2732. PubMed ID: 28768748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variations in antifreeze protein activity and haemolymph osmolality in larvae of the beetle Ragium mordax (Coleoptera: Cerambycidae).
    Wilkens C; Ramløv H
    Cryo Letters; 2008; 29(4):293-300. PubMed ID: 19137192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic ions in cold-hardiness.
    Zachariassen KE; Kristiansen E; Pedersen SA
    Cryobiology; 2004 Apr; 48(2):126-33. PubMed ID: 15094089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freezing induces a loss of freeze tolerance in an overwintering insect.
    Brown CL; Bale JS; Walters KF
    Proc Biol Sci; 2004 Jul; 271(1547):1507-11. PubMed ID: 15306323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of glycerol production by rainbow smelt (Osmerus mordax) to provide freeze resistance and allow foraging at low winter temperatures.
    Driedzic WR; Ewart KV
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):347-57. PubMed ID: 15544960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata.
    Watanabe M
    Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.