BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21550704)

  • 1. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: implications for land and water reclamation in tropical regions.
    Lottermoser BG; Ashley PM
    Environ Pollut; 2011 Oct; 159(10):3028-35. PubMed ID: 21550704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications.
    Freitas H; Prasad MN; Pratas J
    Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond.
    Jacob DL; Otte ML
    Environ Pollut; 2004 Aug; 130(3):337-45. PubMed ID: 15182967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks.
    Pérez-de-Mora A; Madejón P; Burgos P; Cabrera F; Lepp NW; Madejón E
    Environ Pollut; 2011 Oct; 159(10):3018-27. PubMed ID: 21561696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of wetland plants on weathered acidic mine tailings.
    Stoltz E; Greger M
    Environ Pollut; 2006 Nov; 144(2):689-94. PubMed ID: 16584823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractionation and extractability of sulfur, iron and trace elements in sulfidic sediments.
    Burton ED; Bush RT; Sullivan LA
    Chemosphere; 2006 Aug; 64(8):1421-8. PubMed ID: 16434078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of biochar on mine tailings: effects and perspectives for land reclamation.
    Fellet G; Marchiol L; Delle Vedove G; Peressotti A
    Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost.
    Sizmur T; Palumbo-Roe B; Hodson ME
    Environ Pollut; 2011 Jul; 159(7):1852-60. PubMed ID: 21501909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.
    Dold B; Diaby N; Spangenberg JE
    Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands.
    Wei X; Wei H; Viadero RC
    Sci Total Environ; 2011 Feb; 409(5):941-8. PubMed ID: 21167556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The uptake of uranium by Eleocharis dulcis (Chinese water chestnut) in the Ranger Uranium Mine constructed wetland filter.
    Overall RA; Parry DL
    Environ Pollut; 2004 Nov; 132(2):307-20. PubMed ID: 15312943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia.
    Keene AF; Johnston SG; Bush RT; Burton ED; Sullivan LA
    Mar Pollut Bull; 2010 Apr; 60(4):620-6. PubMed ID: 20223484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining.
    Ha NT; Sakakibara M; Sano S
    Bioresour Technol; 2011 Feb; 102(3):2228-34. PubMed ID: 21050745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute and chronic toxicity of effluent water from an abandoned uranium mine.
    Antunes SC; Pereira R; Gonçalves F
    Arch Environ Contam Toxicol; 2007 Aug; 53(2):207-13. PubMed ID: 17587142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluidized bed ash and passive treatment reduce the adverse effects of acid mine drainage on aquatic organisms.
    Porter CM; Nairn RW
    Sci Total Environ; 2010 Oct; 408(22):5445-51. PubMed ID: 20810147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport, fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage: geochemical modeling and anodic stripping voltammetric analysis.
    Yun ST; Jung HB; So CS
    Environ Technol; 2001 Jul; 22(7):749-70. PubMed ID: 11506201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation II. Plants.
    Pérez-de-Mora A; Madejón E; Burgos P; Cabrera F
    Sci Total Environ; 2006 Jun; 363(1-3):38-45. PubMed ID: 16600330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal immobilization in hazardous contaminated minesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain).
    Fernández-Caliani JC; Barba-Brioso C
    J Hazard Mater; 2010 Sep; 181(1-3):817-26. PubMed ID: 20541314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.