These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 21551012)

  • 1. Less is more: standard warm-up causes fatigue and less warm-up permits greater cycling power output.
    Tomaras EK; MacIntosh BR
    J Appl Physiol (1985); 2011 Jul; 111(1):228-35. PubMed ID: 21551012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of passive versus active recovery on power output over six repeated wingate sprints.
    Lopez EI; Smoliga JM; Zavorsky GS
    Res Q Exerc Sport; 2014 Dec; 85(4):519-26. PubMed ID: 25412134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.
    Lepers R; Theurel J; Hausswirth C; Bernard T
    J Sci Med Sport; 2008 Jul; 11(4):381-9. PubMed ID: 17499023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling.
    Koninckx E; Van Leemputte M; Hespel P
    Eur J Appl Physiol; 2010 Jul; 109(4):699-708. PubMed ID: 20213468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of physiological attributes and their association with stochastic cycling performance.
    Levin GT; Laursen PB; Abbiss CR
    Int J Sports Physiol Perform; 2014 Mar; 9(2):309-15. PubMed ID: 23881270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warm-up strategy and high-intensity endurance performance in trained cyclists.
    Christensen PM; Bangsbo J
    Int J Sports Physiol Perform; 2015 Apr; 10(3):353-60. PubMed ID: 25229657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing muscle temperature drop after warm-up improves sprint cycling performance.
    Faulkner SH; Ferguson RA; Gerrett N; Hupperets M; Hodder SG; Havenith G
    Med Sci Sports Exerc; 2013 Feb; 45(2):359-65. PubMed ID: 22935735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central fatigue after cycling evaluated using peripheral magnetic stimulation.
    Kremenic IJ; Glace BW; Ben-Avi SS; Nicholas SJ; McHugh MP
    Med Sci Sports Exerc; 2009 Jul; 41(7):1461-6. PubMed ID: 19516154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diurnal variation in Wingate-test performance and associated electromyographic parameters.
    Chtourou H; Zarrouk N; Chaouachi A; Dogui M; Behm DG; Chamari K; Hug F; Souissi N
    Chronobiol Int; 2011 Oct; 28(8):706-13. PubMed ID: 21793694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns.
    Giacomoni M; Billaut F; Falgairette G
    Int J Sports Med; 2006 Jun; 27(6):468-74. PubMed ID: 16586326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness of a 3 min all-out cycling test to manipulations of power profile and cadence in humans.
    Vanhatalo A; Doust JH; Burnley M
    Exp Physiol; 2008 Mar; 93(3):383-90. PubMed ID: 17951327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength training improves performance and pedaling characteristics in elite cyclists.
    Rønnestad BR; Hansen J; Hollan I; Ellefsen S
    Scand J Med Sci Sports; 2015 Feb; 25(1):e89-98. PubMed ID: 24862305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of pedalling mechanics during a prolonged cycling exercise performed at different cadences.
    Sarre G; Lepers R; van Hoecke J
    J Sports Sci; 2005 Jul; 23(7):693-701. PubMed ID: 16195019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isometric knee extensor fatigue following a Wingate test: peripheral and central mechanisms.
    Fernandez-del-Olmo M; Rodriguez FA; Marquez G; Iglesias X; Marina M; Benitez A; Vallejo L; Acero RM
    Scand J Med Sci Sports; 2013 Feb; 23(1):57-65. PubMed ID: 21812824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of whole-body power, muscle function, and jump performance with prolonged cycling to exhaustion.
    McIntyre JP; Mawston GA; Cairns SP
    Int J Sports Physiol Perform; 2012 Dec; 7(4):332-9. PubMed ID: 22645195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue and recovery after high-intensity exercise. Part II: Recovery interventions.
    Lattier G; Millet GY; Martin A; Martin V
    Int J Sports Med; 2004 Oct; 25(7):509-15. PubMed ID: 15459831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No acute effects of short-term creatine supplementation on muscle properties and sprint performance.
    Deutekom M; Beltman JG; de Ruiter CJ; de Koning JJ; de Haan A
    Eur J Appl Physiol; 2000 Jun; 82(3):223-9. PubMed ID: 10929216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pseudoephedrine on maximal cycling power and submaximal cycling efficiency.
    Hodges AN; Lynn BM; Bula JE; Donaldson MG; Dagenais MO; McKenzie DC
    Med Sci Sports Exerc; 2003 Aug; 35(8):1316-9. PubMed ID: 12900684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.