BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

900 related articles for article (PubMed ID: 21551030)

  • 1. Climate trends and global crop production since 1980.
    Lobell DB; Schlenker W; Costa-Roberts J
    Science; 2011 Jul; 333(6042):616-20. PubMed ID: 21551030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.
    Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Climate and management contributions to recent trends in U.S. agricultural yields".
    Gu L
    Science; 2003 Jun; 300(5625):1505; author reply 1505. PubMed ID: 12791966
    [No Abstract]   [Full Text] [Related]  

  • 5. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.
    Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.
    Zhang T; Huang Y
    J Sci Food Agric; 2012 Jun; 92(8):1643-52. PubMed ID: 22190019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting.
    Schauberger B; Gornott C; Wechsung F
    Glob Chang Biol; 2017 Nov; 23(11):4750-4764. PubMed ID: 28464336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of crop yield growth to global temperature and socioeconomic changes.
    Iizumi T; Furuya J; Shen Z; Kim W; Okada M; Fujimori S; Hasegawa T; Nishimori M
    Sci Rep; 2017 Aug; 7(1):7800. PubMed ID: 28798370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins.
    van der Fels-Klerx HJ; Olesen JE; Naustvoll LJ; Friocourt Y; Mengelers MJ; Christensen JH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1647-59. PubMed ID: 22891967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate drives variability and joint variability of global crop yields.
    Najafi E; Pal I; Khanbilvardi R
    Sci Total Environ; 2019 Apr; 662():361-372. PubMed ID: 30690370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.
    Zhang T; Lin X; Sassenrath GF
    Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agriculture. Study shows richer harvests owe much to climate.
    Stokstad E
    Science; 2003 Feb; 299(5609):997. PubMed ID: 12586915
    [No Abstract]   [Full Text] [Related]  

  • 16. Introduction: food crops in a changing climate.
    Slingo JM; Challinor AJ; Hoskins BJ; Wheeler TR
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):1983-9. PubMed ID: 16433087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches.
    Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M
    Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does climate change affect potential yields of four staple grain crops worldwide by 2030?
    Cai C; Lv L; Wei S; Zhang L; Cao W
    PLoS One; 2024; 19(5):e0303857. PubMed ID: 38820516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change increases deoxynivalenol contamination of wheat in north-western Europe.
    van der Fels-Klerx HJ; Olesen JE; Madsen MS; Goedhart PW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1593-604. PubMed ID: 22742589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate and management contributions to recent trends in U.S. agricultural yields.
    Lobell DB; Asner GP
    Science; 2003 Feb; 299(5609):1032. PubMed ID: 12586935
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 45.