BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21551074)

  • 21. RACK1 associates with NHE5 in focal adhesions and positively regulates the transporter activity.
    Onishi I; Lin PJ; Diering GH; Williams WP; Numata M
    Cell Signal; 2007 Jan; 19(1):194-203. PubMed ID: 16920332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sodium Dynamics in Pyramidal Neuron Dendritic Spines: Synaptically Evoked Entry Predominantly through AMPA Receptors and Removal by Diffusion.
    Miyazaki K; Ross WN
    J Neurosci; 2017 Oct; 37(41):9964-9976. PubMed ID: 28904093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation.
    Sharma K; Fong DK; Craig AM
    Mol Cell Neurosci; 2006 Apr; 31(4):702-12. PubMed ID: 16504537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
    Evans JC; Robinson CM; Shi M; Webb DJ
    J Biol Chem; 2015 Apr; 290(16):10295-308. PubMed ID: 25750125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines.
    Lin H; Huganir R; Liao D
    Biochem Biophys Res Commun; 2004 Apr; 316(2):501-11. PubMed ID: 15020245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mRNA binding protein staufen 1-dependent regulation of pyramidal cell spine morphology via NMDA receptor-mediated synaptic plasticity.
    Lebeau G; DesGroseillers L; Sossin W; Lacaille JC
    Mol Brain; 2011 Jun; 4():22. PubMed ID: 21635779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term potentiation in isolated dendritic spines.
    Corera AT; Doucet G; Fon EA
    PLoS One; 2009 Jun; 4(6):e6021. PubMed ID: 19547754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting of NF-κB to Dendritic Spines Is Required for Synaptic Signaling and Spine Development.
    Dresselhaus EC; Boersma MCH; Meffert MK
    J Neurosci; 2018 Apr; 38(17):4093-4103. PubMed ID: 29555853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage.
    Tian L; Stefanidakis M; Ning L; Van Lint P; Nyman-Huttunen H; Libert C; Itohara S; Mishina M; Rauvala H; Gahmberg CG
    J Cell Biol; 2007 Aug; 178(4):687-700. PubMed ID: 17682049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Drebrin in Synaptic Plasticity.
    Sekino Y; Koganezawa N; Mizui T; Shirao T
    Adv Exp Med Biol; 2017; 1006():183-201. PubMed ID: 28865021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression.
    Horne EA; Dell'Acqua ML
    J Neurosci; 2007 Mar; 27(13):3523-34. PubMed ID: 17392468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes.
    Park M; Salgado JM; Ostroff L; Helton TD; Robinson CG; Harris KM; Ehlers MD
    Neuron; 2006 Dec; 52(5):817-30. PubMed ID: 17145503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase.
    Lam TI; Brennan-Minnella AM; Won SJ; Shen Y; Hefner C; Shi Y; Sun D; Swanson RA
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4362-8. PubMed ID: 24163350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of drebrin in dendritic spines.
    Koganezawa N; Hanamura K; Sekino Y; Shirao T
    Mol Cell Neurosci; 2017 Oct; 84():85-92. PubMed ID: 28161364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin.
    Gomez LL; Alam S; Smith KE; Horne E; Dell'Acqua ML
    J Neurosci; 2002 Aug; 22(16):7027-44. PubMed ID: 12177200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner.
    Schubert V; Da Silva JS; Dotti CG
    J Cell Biol; 2006 Jan; 172(3):453-67. PubMed ID: 16449195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The LMTK1-TBC1D9B-Rab11A Cascade Regulates Dendritic Spine Formation via Endosome Trafficking.
    Nishino H; Saito T; Wei R; Takano T; Tsutsumi K; Taniguchi M; Ando K; Tomomura M; Fukuda M; Hisanaga SI
    J Neurosci; 2019 Nov; 39(48):9491-9502. PubMed ID: 31628178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A slow pH-dependent conformational transition underlies a novel mode of activation of the epithelial Na+/H+ exchanger-3 isoform.
    Hayashi H; Szászi K; Coady-Osberg N; Orlowski J; Kinsella JL; Grinstein S
    J Biol Chem; 2002 Mar; 277(13):11090-6. PubMed ID: 11792708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. beta-Arrestins bind and decrease cell-surface abundance of the Na+/H+ exchanger NHE5 isoform.
    Szabó EZ; Numata M; Lukashova V; Iannuzzi P; Orlowski J
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2790-5. PubMed ID: 15699339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning.
    Henson MA; Tucker CJ; Zhao M; Dudek SM
    Neurobiol Learn Mem; 2017 Feb; 138():39-53. PubMed ID: 27794462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.