BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2155160)

  • 1. Half helical turn spacing changes convert a frog into a mouse rDNA promoter: a distant upstream domain determines the helix face of the initiation site.
    Pape LK; Windle JJ; Sollner-Webb B
    Genes Dev; 1990 Jan; 4(1):52-62. PubMed ID: 2155160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse and frog violate the paradigm of species-specific transcription of ribosomal RNA genes.
    Culotta VC; Wilkinson JK; Sollner-Webb B
    Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7498-502. PubMed ID: 3478707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upstream domains of the Xenopus laevis rDNA promoter are revealed in microinjected oocytes.
    Windle J; Sollner-Webb B
    Mol Cell Biol; 1986 Apr; 6(4):1228-34. PubMed ID: 3785161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distant and precisely positioned domains promote transcription of Xenopus laevis rRNA genes: analysis with linker-scanning mutants.
    Windle JJ; Sollner-Webb B
    Mol Cell Biol; 1986 Dec; 6(12):4585-93. PubMed ID: 3796610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the core promoter of human and mouse ribosomal RNA gene. Asymmetry of species-specific transcription.
    Ishikawa Y; Safrany G; Hisatake K; Tanaka N; Maeda Y; Kato H; Kominami R; Muramatsu M
    J Mol Biol; 1991 Mar; 218(1):55-67. PubMed ID: 2002507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated levels of rRNA synthesis in fission yeast are driven by an intergenic rDNA region positioned over 2500 nucleotides upstream of the initiation site.
    Liu Z; Zhao A; Chen L; Pape L
    Nucleic Acids Res; 1997 Feb; 25(3):659-67. PubMed ID: 9016610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An RNA polymerase I promoter located in the CHO and mouse ribosomal DNA spacers: functional analysis and factor and sequence requirements.
    Tower J; Henderson SL; Dougherty KM; Wejksnora PJ; Sollner-Webb B
    Mol Cell Biol; 1989 Apr; 9(4):1513-25. PubMed ID: 2725513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and functional characterization of TIF-IB, a factor that confers promoter specificity to mouse RNA polymerase I.
    Schnapp A; Clos J; Hädelt W; Schreck R; Cvekl A; Grummt I
    Nucleic Acids Res; 1990 Mar; 18(6):1385-93. PubMed ID: 2326184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and sequence analysis of the ribosomal DNA promoter region of Crithidia fasciculata.
    Grondal EJ; Evers R; Cornelissen AW
    Nucleic Acids Res; 1990 Mar; 18(6):1333-8. PubMed ID: 2326181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point mutation analysis of the Xenopus laevis RNA polymerase I core promoter.
    Firek S; Read C; Smith DR; Moss T
    Nucleic Acids Res; 1990 Jan; 18(1):105-9. PubMed ID: 2308816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 140-base-pair repetitive sequence element in the mouse rRNA gene spacer enhances transcription by RNA polymerase I in a cell-free system.
    Kuhn A; Deppert U; Grummt I
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7527-31. PubMed ID: 2217183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal gene promoter domains can function as artificial enhancers of RNA polymerase I transcription, supporting a promoter origin for natural enhancers in Xenopus.
    Pikaard CS
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):464-8. PubMed ID: 8290549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the upstream activating sequence and site of carbon and nitrogen source repression in the promoter of an early-induced sporulation gene of Bacillus subtilis.
    Frisby D; Zuber P
    J Bacteriol; 1991 Dec; 173(23):7557-64. PubMed ID: 1938951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of clustered point mutations in the human ribosomal RNA gene promoter by transient expression in vivo.
    Jones MH; Learned RM; Tjian R
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):669-73. PubMed ID: 3422449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors and nucleotide sequences that direct ribosomal DNA transcription and their relationship to the stable transcription complex.
    Tower J; Culotta VC; Sollner-Webb B
    Mol Cell Biol; 1986 Oct; 6(10):3451-62. PubMed ID: 3796588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domains of the rat rDNA promoter must be aligned stereospecifically.
    Xie WQ; Rothblum LI
    Mol Cell Biol; 1992 Mar; 12(3):1266-75. PubMed ID: 1545808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of Arabidopsis thaliana rRNA gene and spacer promoters in vivo and by transient expression.
    Doelling JH; Gaudino RJ; Pikaard CS
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7528-32. PubMed ID: 8356050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Xenopus ribosomal DNA 60- and 81-base-pair repeats are position-dependent enhancers that function at the establishment of the preinitiation complex: analysis in vivo and in an enhancer-responsive in vitro system.
    Pape LK; Windle JJ; Mougey EB; Sollner-Webb B
    Mol Cell Biol; 1989 Nov; 9(11):5093-104. PubMed ID: 2601710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro.
    Reiter WD; Hüdepohl U; Zillig W
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9509-13. PubMed ID: 2124695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complex control region of the mouse rRNA gene directs accurate initiation by RNA polymerase I.
    Miller KG; Tower J; Sollner-Webb B
    Mol Cell Biol; 1985 Mar; 5(3):554-62. PubMed ID: 3990683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.