These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 21551632)

  • 41. Reinstatement of motor deficits in recovered brain-injured animals: the role of cerebellar norepinephrine.
    Boyeson MG; Krobert KA; Scherer PJ; Grade CM
    Restor Neurol Neurosci; 1993 Jan; 5(4):283-90. PubMed ID: 21551714
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Norepinephrine depletion facilitates recovery of function after focal ischemia in the rat.
    Windle V; Power A; Corbett D
    Eur J Neurosci; 2007 Oct; 26(7):1822-31. PubMed ID: 17868372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of 6-hydroxydopamine lesioning of the medial prefrontal cortex on social interactions in adolescent and adult rats.
    Li CR; Huang GB; Sui ZY; Han EH; Chung YC
    Brain Res; 2010 Jul; 1346():183-9. PubMed ID: 20513371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The behavioral effects of enriched housing are not altered by serotonin depletion but enrichment alters hippocampal neurochemistry.
    Galani R; Berthel MC; Lazarus C; Majchrzak M; Barbelivien A; Kelche C; Cassel JC
    Neurobiol Learn Mem; 2007 Jul; 88(1):1-10. PubMed ID: 17493843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression of the apolipoprotein E gene does not affect motor recovery after sensorimotor cortex injury in the mouse.
    Goldstein LB; Vitek MP; Dawson H; Bullman S
    Neuroscience; 2000; 99(4):705-10. PubMed ID: 10974433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid reliable measurement of lesion parameters for studies of motor recovery after sensorimotor cortex injury in the rat.
    Goldstein LB
    J Neurosci Methods; 1993 Jun; 48(1-2):35-42. PubMed ID: 8377521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury.
    Goldstein LB; Davis JN
    J Neurosci Methods; 1990 Feb; 31(2):101-7. PubMed ID: 2319810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Approaches to Monitor Circuit Disruption after Traumatic Brain Injury: Frontiers in Preclinical Research.
    Krishna G; Beitchman JA; Bromberg CE; Currier Thomas T
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Central Noradrenergic Agonists in the Treatment of Ischemic Stroke-an Overview.
    Sternberg Z; Schaller B
    Transl Stroke Res; 2020 Apr; 11(2):165-184. PubMed ID: 31327133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vagus Nerve Stimulation During Rehabilitative Training Improves Forelimb Recovery After Chronic Ischemic Stroke in Rats.
    Khodaparast N; Kilgard MP; Casavant R; Ruiz A; Qureshi I; Ganzer PD; Rennaker RL; Hays SA
    Neurorehabil Neural Repair; 2016 Aug; 30(7):676-84. PubMed ID: 26542082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.
    Khodaparast N; Hays SA; Sloan AM; Fayyaz T; Hulsey DR; Rennaker RL; Kilgard MP
    Neurorehabil Neural Repair; 2014 Sep; 28(7):698-706. PubMed ID: 24553102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noradrenergic enhancement improves motor network connectivity in stroke patients.
    Wang LE; Fink GR; Diekhoff S; Rehme AK; Eickhoff SB; Grefkes C
    Ann Neurol; 2011 Feb; 69(2):375-88. PubMed ID: 21387380
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of cerebral cortex plasticity in the recovery of swallowing function following dysphagic stroke.
    Barritt AW; Smithard DG
    Dysphagia; 2009 Mar; 24(1):83-90. PubMed ID: 18716838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prenatal exposure to ozone disrupts cerebellar monoamine contents in newborn rats.
    Gonzalez-Pina R; Escalante-Membrillo C; Alfaro-Rodriguez A; Gonzalez-Maciel A
    Neurochem Res; 2008 May; 33(5):912-8. PubMed ID: 18030618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neurotransmitters and motor activity: effects on functional recovery after brain injury.
    Goldstein LB
    NeuroRx; 2006 Oct; 3(4):451-7. PubMed ID: 17012058
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Norepinephrine depletion impairs motor recovery following sensorimotor cortex injury in the rat.
    Goldstein LB; Coviello A; Miller GD; Davis JN
    Restor Neurol Neurosci; 1991 Jan; 3(1):41-7. PubMed ID: 21551632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat.
    Goldstein LB
    Restor Neurol Neurosci; 1997 Jan; 11(1):55-63. PubMed ID: 21551528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adverse effects of catecholaminergic drugs following unilateral cerebellar ablations.
    Boyeson MG; Feeney DM
    Restor Neurol Neurosci; 1991 Jan; 3(5):227-33. PubMed ID: 21551642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?
    Takata K; Yamauchi H; Tatsuno H; Hashimoto K; Abo M
    Eur Neurol; 2006; 56(2):106-12. PubMed ID: 16960450
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of dorsal noradrenergic bundle lesions on recovery after sensorimotor cortex injury.
    Goldstein LB; Bullman S
    Pharmacol Biochem Behav; 1997 Dec; 58(4):1151-7. PubMed ID: 9408227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.