BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 2155230)

  • 1. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B.
    Chen CM; Ye QZ; Zhu ZM; Wanner BL; Walsh CT
    J Biol Chem; 1990 Mar; 265(8):4461-71. PubMed ID: 2155230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi.
    Metcalf WW; Wanner BL
    J Bacteriol; 1991 Jan; 173(2):587-600. PubMed ID: 1846145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli.
    Metcalf WW; Wanner BL
    Gene; 1993 Jul; 129(1):27-32. PubMed ID: 8335257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA' elements.
    Metcalf WW; Wanner BL
    J Bacteriol; 1993 Jun; 175(11):3430-42. PubMed ID: 8388873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
    Wanner BL; Metcalf WW
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):133-9. PubMed ID: 1335942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12.
    Makino K; Kim SK; Shinagawa H; Amemura M; Nakata A
    J Bacteriol; 1991 Apr; 173(8):2665-72. PubMed ID: 1840580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
    Lee KS; Metcalf WW; Wanner BL
    J Bacteriol; 1992 Apr; 174(8):2501-10. PubMed ID: 1556070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
    Yakovleva GM; Kim SK; Wanner BL
    Appl Microbiol Biotechnol; 1998 May; 49(5):573-8. PubMed ID: 9650256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli.
    Wanner BL; Boline JA
    J Bacteriol; 1990 Mar; 172(3):1186-96. PubMed ID: 2155195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products.
    Parker GF; Higgins TP; Hawkes T; Robson RL
    J Bacteriol; 1999 Jan; 181(2):389-95. PubMed ID: 9882650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genes for phosphonate biodegradation in Escherichia coli.
    Wanner BL
    SAAS Bull Biochem Biotechnol; 1992 Jan; 5():1-6. PubMed ID: 1368181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway.
    Jochimsen B; Lolle S; McSorley FR; Nabi M; Stougaard J; Zechel DL; Hove-Jensen B
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11393-8. PubMed ID: 21705661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2.
    Jiang W; Metcalf WW; Lee KS; Wanner BL
    J Bacteriol; 1995 Nov; 177(22):6411-21. PubMed ID: 7592415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK; Metcalf WW
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli.
    Hove-Jensen B; Rosenkrantz TJ; Zechel DL; Willemoës M
    J Bacteriol; 2010 Jan; 192(1):370-4. PubMed ID: 19854894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Escherichia coli dam gene is expressed as a distal gene of a new operon.
    Jonczyk P; Hines R; Smith DW
    Mol Gen Genet; 1989 May; 217(1):85-96. PubMed ID: 2549371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular genetics of carbon-phosphorus bond cleavage in bacteria.
    Wanner BL
    Biodegradation; 1994 Dec; 5(3-4):175-84. PubMed ID: 7765831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster.
    Prieto MA; Díaz E; García JL
    J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli.
    Kim SK; Makino K; Amemura M; Shinagawa H; Nakata A
    J Bacteriol; 1993 Mar; 175(5):1316-24. PubMed ID: 8444794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.