These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels. Liu JL; Eisenberg B Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012711. PubMed ID: 26274207 [TBL] [Abstract][Full Text] [Related]
4. Variational multiscale models for charge transport. Wei GW; Zheng Q; Chen Z; Xia K SIAM Rev Soc Ind Appl Math; 2012; 54(4):699-754. PubMed ID: 23172978 [TBL] [Abstract][Full Text] [Related]
5. A parallel finite element simulator for ion transport through three-dimensional ion channel systems. Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647 [TBL] [Abstract][Full Text] [Related]
6. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. Kurnikova MG; Coalson RD; Graf P; Nitzan A Biophys J; 1999 Feb; 76(2):642-56. PubMed ID: 9929470 [TBL] [Abstract][Full Text] [Related]
7. A stabilized finite volume element method for solving Poisson-Nernst-Planck equations. Li J; Ying J Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3543. PubMed ID: 34716987 [TBL] [Abstract][Full Text] [Related]
9. An improved Poisson-Nernst-Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations. Chao Z; Xie D J Comput Chem; 2021 Oct; 42(27):1929-1943. PubMed ID: 34382702 [TBL] [Abstract][Full Text] [Related]
10. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore. Chaudhry JH; Comer J; Aksimentiev A; Olson LN Commun Comput Phys; 2014 Jan; 15(1):. PubMed ID: 24363784 [TBL] [Abstract][Full Text] [Related]
11. MIB method for elliptic equations with multi-material interfaces. Xia K; Zhan M; Wei GW J Comput Phys; 2011 Jun; 230(12):4588-4615. PubMed ID: 21691433 [TBL] [Abstract][Full Text] [Related]
12. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms. Chen D Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114 [TBL] [Abstract][Full Text] [Related]
13. Electroneutral models for dynamic Poisson-Nernst-Planck systems. Song Z; Cao X; Huang H Phys Rev E; 2018 Jan; 97(1-1):012411. PubMed ID: 29448453 [TBL] [Abstract][Full Text] [Related]
14. Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels. Dyrka W; Bartuzel MM; Kotulska M Proteins; 2013 Oct; 81(10):1802-22. PubMed ID: 23720356 [TBL] [Abstract][Full Text] [Related]
16. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels. Chen D Bull Math Biol; 2016 Aug; 78(8):1703-26. PubMed ID: 27480225 [TBL] [Abstract][Full Text] [Related]
17. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface. Chen D; Chen Z; Wei GW Int J Numer Method Biomed Eng; 2012 Jan; 28(1):25-51. PubMed ID: 22328970 [TBL] [Abstract][Full Text] [Related]
18. Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: Applications to ion channels. Singer A; Gillespie D; Norbury J; Eisenberg RS Eur J Appl Math; 2008; 19(5):541-569. PubMed ID: 19809600 [TBL] [Abstract][Full Text] [Related]
19. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Chen D; Lear J; Eisenberg B Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596 [TBL] [Abstract][Full Text] [Related]
20. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Schuss Z; Nadler B; Eisenberg RS Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036116. PubMed ID: 11580403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]