These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21552354)

  • 1. Experimental evaluation of an adaptive Joule-Thomson cooling system including silicon-microfabricated heat exchanger and microvalve components.
    Zhu W; Park JM; White MJ; Nellis GF; Gianchandani YB
    J Vac Sci Technol A; 2011 Mar; 29(2):21005-210056. PubMed ID: 21552354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Si/Glass Bulk-Micromachined Cryogenic Heat Exchanger for High Heat Loads: Fabrication, Test, and Application Results.
    Zhu W; White MJ; Nellis GF; Klein SA; Gianchandani YB
    J Microelectromech Syst; 2010 Feb; 19(1):38-47. PubMed ID: 20490284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A miniature Joule-Thomson cooler for optical detectors in space.
    Derking JH; Holland HJ; Tirolien T; ter Brake HJ
    Rev Sci Instrum; 2012 Apr; 83(4):045117. PubMed ID: 22559586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.
    White MJ; Nellis GF; Kelin SA; Zhu W; Gianchandani Y
    J Heat Transfer; 2010 Nov; 132(11):1-9. PubMed ID: 20976021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooling a low noise amplifier with a micromachined cryogenic cooler.
    Cao HS; Witvers RH; Vanapalli S; Holland HJ; ter Brake HJ
    Rev Sci Instrum; 2013 Oct; 84(10):105102. PubMed ID: 24182158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electromagnetic microvalve for pneumatic control of microfluidic systems.
    Liu X; Li S
    J Lab Autom; 2014 Oct; 19(5):444-53. PubMed ID: 24742860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery.
    Zhang X; Oseyemi AE
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note: A low leakage liquid seal for micromachined gas valves.
    Evans AT; Gianchandani YB
    Rev Sci Instrum; 2010 Jun; 81(6):066105. PubMed ID: 20590276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Self-Adaptive Fuel Supply Mechanism in Micro DMFC Based on the Microvalve.
    Yuan Z; Chuai W; Guo Z; Tu Z; Kong F
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31146378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microvalve Module with High Chemical Inertness and Embedded Flow Heating for Microscale Gas Chromatography.
    Lu HT; Qin Y; Gianchandani Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Performance Optimization of Integrated Microchannel Cooling Plate for IGBT Power Module.
    Xu H; Huang J; Tian W; Li Z
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a closed-loop J-T cryoablation device with a long cooling area and multiple expansion parts.
    Lee C; Baek S; Lee J; Hwang G; Jeong S; Park SW
    Med Eng Phys; 2014 Nov; 36(11):1464-72. PubMed ID: 25164379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the Performance of a Novel Radiator with Three Inlets and One Outlet Based on Topology Optimization.
    Zhou T; Chen B; Liu H
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34064079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrogel-actuated microvalve for smart flow control.
    Lei M; Salim A; Siegel R; Ziaie B
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2041-4. PubMed ID: 17272120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.
    Jiang PX; Huang G; Zhu Y; Xu R; Liao Z; Lu T
    Bioinspir Biomim; 2017 Sep; 12(5):056002. PubMed ID: 28862147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.
    Fillaudeau L; Winterton P; Leuliet JC; Tissier JP; Maury V; Semet F; Debreyne P; Berthou M; Chopard F
    J Dairy Sci; 2006 Dec; 89(12):4475-89. PubMed ID: 17106078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and on-orbit operation of the Soft X-ray Spectrometer ADR on the Hitomi Observatory.
    Shirron PJ; Kimball MO; James BL; Muench T; Canavan ER; DiPirro MJ; Bialas TA; Sneiderman GA; Boyce KR; Kilbourne CA; Porter FS; Fujimoto R; Takei Y; Yoshida S; Mitsuda K
    J Astron Telesc Instrum Syst; 2018 Apr; 4(2):. PubMed ID: 31534985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact, power-efficient architectures using microvalves and microsensors, for intrathecal, insulin, and other drug delivery systems.
    Li T; Evans AT; Chiravuri S; Gianchandani RY; Gianchandani YB
    Adv Drug Deliv Rev; 2012 Nov; 64(14):1639-49. PubMed ID: 22580183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low power, microvalve regulated architecture for drug delivery systems.
    Evans AT; Park JM; Chiravuri S; Gianchandani YB
    Biomed Microdevices; 2010 Feb; 12(1):159-68. PubMed ID: 19936930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvalves based on ionic polymer-metal composites for microfluidic application.
    Yun JS; Yang KS; Choi NJ; Lee HK; Moon SE; Kim DH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5975-9. PubMed ID: 22121642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.