These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21552464)

  • 1. Inferring the Sign of Kinase-Substrate Interactions by Combining Quantitative Phosphoproteomics with a Literature-Based Mammalian Kinome Network.
    Hernandez M; Lachmann A; Zhao S; Xiao K; Ma'ayan A
    Proc IEEE Int Symp Bioinformatics Bioeng; 2010; 2010():180-184. PubMed ID: 21552464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhosNetVis: a web-based tool for fast kinase-substrate enrichment analysis and interactive 2D/3D network visualizations of phosphoproteomics data.
    Rawal O; Turhan B; Peradejordi IF; Chandrasekar S; Kalayci S; Gnjatic S; Johnson J; Bouhaddou M; Gümüş ZH
    ArXiv; 2024 Jul; ():. PubMed ID: 39010877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Phosphorylation Network Reconstruction: An Update on Methods and Resources.
    Zhang M; Duan G
    Methods Mol Biol; 2021; 2358():203-219. PubMed ID: 34270057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Phosphosites to Kinases.
    Munk S; Refsgaard JC; Olsen JV; Jensen LJ
    Methods Mol Biol; 2016; 1355():307-21. PubMed ID: 26584935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis.
    Narushima Y; Kozuka-Hata H; Tsumoto K; Inoue J; Oyama M
    Bioinformatics; 2016 Jul; 32(14):2083-8. PubMed ID: 27153602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomics data-driven signalling network inference: Does it work?
    Sriraja LO; Werhli A; Petsalaki E
    Comput Struct Biotechnol J; 2023; 21():432-443. PubMed ID: 36618990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale Discovery of Substrates of the Human Kinome.
    Sugiyama N; Imamura H; Ishihama Y
    Sci Rep; 2019 Jul; 9(1):10503. PubMed ID: 31324866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics.
    Ray BN; Kweon HK; Argetsinger LS; Fingar DC; Andrews PC; Carter-Su C
    Mol Endocrinol; 2012 Jun; 26(6):1056-73. PubMed ID: 22570334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell-signaling network temporally resolves specific versus promiscuous phosphorylation.
    Kanshin E; Bergeron-Sandoval LP; Isik SS; Thibault P; Michnick SW
    Cell Rep; 2015 Feb; 10(7):1202-14. PubMed ID: 25704821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illuminating the Dark Cancer Phosphoproteome Through a Machine-Learned Co-Regulation Map of 26,280 Phosphosites.
    Jiang W; Jaehnig EJ; Liao Y; Yaron-Barir TM; Johnson JL; Cantley LC; Zhang B
    bioRxiv; 2024 Mar; ():. PubMed ID: 38562798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free quantitative phosphoproteomic analysis reveals differentially regulated proteins and pathway in PRRSV-infected pulmonary alveolar macrophages.
    Luo R; Fang L; Jin H; Wang D; An K; Xu N; Chen H; Xiao S
    J Proteome Res; 2014 Mar; 13(3):1270-80. PubMed ID: 24533505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.
    Zhang X; Belkina N; Jacob HK; Maity T; Biswas R; Venugopalan A; Shaw PG; Kim MS; Chaerkady R; Pandey A; Guha U
    Proteomics; 2015 Jan; 15(2-3):340-55. PubMed ID: 25404012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Interactions Between Kinases and Substrates Based on Protein-Protein Interaction Network.
    Chen Q; Deng C; Lan W; Liu Z; Zheng R; Liu J; Wang J
    J Comput Biol; 2019 Aug; 26(8):836-845. PubMed ID: 30990327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Assessment of Kinome-wide Activation States.
    Schmidlin T; Debets DO; van Gelder CAGH; Stecker KE; Rontogianni S; van den Eshof BL; Kemper K; Lips EH; van den Biggelaar M; Peeper DS; Heck AJR; Altelaar M
    Cell Syst; 2019 Oct; 9(4):366-374.e5. PubMed ID: 31521607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale proteomics analysis of the human kinome.
    Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H
    Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive characterization of the phosphoproteome of gastric cancer from endoscopic biopsy specimens.
    Abe Y; Hirano H; Shoji H; Tada A; Isoyama J; Kakudo A; Gunji D; Honda K; Boku N; Adachi J; Tomonaga T
    Theranostics; 2020; 10(5):2115-2129. PubMed ID: 32089736
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets.
    Werth EG; McConnell EW; Couso Lianez I; Perrine Z; Crespo JL; Umen JG; Hicks LM
    New Phytol; 2019 Jan; 221(1):247-260. PubMed ID: 30040123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Plant Kinase Substrates Based on Kinase Assay-Linked Phosphoproteomics.
    Hsu CC; Arrington JV; Xue L; Tao WA
    Methods Mol Biol; 2017; 1636():327-335. PubMed ID: 28730489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.