These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21552608)

  • 1. Analysis and modeling of flow in rotating spiral microchannels: towards math-aided design of microfluidic systems using centrifugal pumping.
    Wang L; Kropinski MC; Li PC
    Lab Chip; 2011 Jun; 11(12):2097-108. PubMed ID: 21552608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics.
    Siegrist J; Amasia M; Singh N; Banerjee D; Madou M
    Lab Chip; 2010 Apr; 10(7):876-86. PubMed ID: 20300674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of a microfluidic channel in the presence of an electrostatic induced cross-flow.
    Scuor N; Gallina P; Sbaizero O; Mahajan RL
    Biomed Microdevices; 2005 Sep; 7(3):231-42. PubMed ID: 16133811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically driven micropump with a twin spiral microrotor.
    Maruo S; Takaura A; Saito Y
    Opt Express; 2009 Oct; 17(21):18525-32. PubMed ID: 20372583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing synthetic, pumping cilia that switch the flow direction in microchannels.
    Alexeev A; Yeomans JM; Balazs AC
    Langmuir; 2008 Nov; 24(21):12102-6. PubMed ID: 18847292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rotating microfluidic array chip for staining assays.
    Chen H; Li X; Wang L; Li PC
    Talanta; 2010 Jun; 81(4-5):1203-8. PubMed ID: 20441885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFD simulation of non-Newtonian fluid flow in anaerobic digesters.
    Wu B; Chen S
    Biotechnol Bioeng; 2008 Feb; 99(3):700-11. PubMed ID: 17705227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of coliform decay within a CFD (computational fluid dynamic) model of a waste stabilisation pond.
    Shilton A; Harrison J
    Water Sci Technol; 2003; 48(2):205-10. PubMed ID: 14510212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency bandwidth limitation of external pulse electric field in microchannels. Applications to analyte velocity modulation detections.
    Wang SC
    Biosens Bioelectron; 2004 Jul; 20(1):139-42. PubMed ID: 15142587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow study on a newly developed impeller for a left ventricular assist device.
    Hsu CH
    J Artif Organs; 2003; 6(2):92-100. PubMed ID: 14598109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.