These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 21553036)

  • 21. Catalytic wet air oxidation with Ni- and Fe-doped mixed oxides derived from hydrotalcites.
    Ovejero G; Rodríguez A; Vallet A; Gómez P; García J
    Water Sci Technol; 2011; 63(10):2381-7. PubMed ID: 21977664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination.
    Ovejero G; Rodríguez A; Vallet A; García J
    Chemosphere; 2013 Jan; 90(4):1379-86. PubMed ID: 22960061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor.
    Vallet A; Besson M; Ovejero G; García J
    J Hazard Mater; 2012 Aug; 227-228():410-7. PubMed ID: 22682798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts.
    Palacio LA; Velásquez J; Echavarría A; Faro A; Ribeiro FR; Ribeiro MF
    J Hazard Mater; 2010 May; 177(1-3):407-13. PubMed ID: 20047794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of different advanced oxidation processes for phenol degradation.
    Esplugas S; Giménez J; Contreras S; Pascual E; Rodríguez M
    Water Res; 2002 Feb; 36(4):1034-42. PubMed ID: 11848342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wet air oxidation and catalytic wet air oxidation for dyes degradation.
    Ovejero G; Sotelo JL; Rodríguez A; Vallet A; García J
    Environ Sci Pollut Res Int; 2011 Nov; 18(9):1518-26. PubMed ID: 21553036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview.
    Javaid R; Qazi UY
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31212717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review.
    Sushma ; Kumari M; Saroha AK
    J Environ Manage; 2018 Dec; 228():169-188. PubMed ID: 30218904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.
    Kim KH; Ihm SK
    J Hazard Mater; 2011 Feb; 186(1):16-34. PubMed ID: 21122984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal.
    Ismail GA; Sakai H
    Chemosphere; 2022 Mar; 291(Pt 3):132906. PubMed ID: 34785181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye.
    Zewde AA; Zhang L; Li Z; Odey EA
    Rev Environ Health; 2019 Dec; 34(4):365-375. PubMed ID: 31400750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters.
    Verma AK; Dash RR; Bhunia P
    J Environ Manage; 2012 Jan; 93(1):154-68. PubMed ID: 22054582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and catalytic utilization of bimetallic systems for wastewater remediation: A review.
    Quiton KGN; Lu MC; Huang YH
    Chemosphere; 2021 Jan; 262():128371. PubMed ID: 33182123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subcritical and supercritical water oxidation for dye decomposition.
    Javaid R; Qazi UY; Ikhlaq A; Zahid M; Alazmi A
    J Environ Manage; 2021 Jul; 290():112605. PubMed ID: 33894487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater.
    Shindhal T; Rakholiya P; Varjani S; Pandey A; Ngo HH; Guo W; Ng HY; Taherzadeh MJ
    Bioengineered; 2021 Dec; 12(1):70-87. PubMed ID: 33356799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes.
    Zucca P; Neves CM; Simões MM; Neves Mda G; Cocco G; Sanjust E
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27455229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review.
    Baloyi J; Ntho T; Moma J
    RSC Adv; 2018 Jan; 8(10):5197-5211. PubMed ID: 35542412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of synthetic dyes using nanoparticles: a mini-review.
    Mehta M; Sharma M; Pathania K; Jena PK; Bhushan I
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):49434-49446. PubMed ID: 34350572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of transition metals in coinage metal nanoclusters for the remediation of toxic dyes in aqueous systems.
    Sharma P; Ganguly M; Sahu M
    RSC Adv; 2024 Apr; 14(16):11411-11428. PubMed ID: 38595712
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.