BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21553165)

  • 1. Injectability evaluation: an open issue.
    Cilurzo F; Selmin F; Minghetti P; Adami M; Bertoni E; Lauria S; Montanari L
    AAPS PharmSciTech; 2011 Jun; 12(2):604-9. PubMed ID: 21553165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefilled Syringe Injection Force Impact Assessment from Back Pressure: An Approach for Testing Syringe Injectability In Situ vs. In Vitro.
    Megna C; Wells O; Bonanno D; Rasheed W; Cristofolli E
    PDA J Pharm Sci Technol; 2023; 77(5):340-349. PubMed ID: 37188533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectability as a function of viscosity and dosing materials for subcutaneous administration.
    Watt RP; Khatri H; Dibble ARG
    Int J Pharm; 2019 Jan; 554():376-386. PubMed ID: 30414478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectability of biodegradable in situ forming microparticle systems (ISM).
    Rungseevijitprapa W; Bodmeier R
    Eur J Pharm Sci; 2009 Mar; 36(4-5):524-31. PubMed ID: 19124076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding syringeability and injectability of high molecular weight PEO solution through time-dependent force-distance profiles.
    Feng X; Wu KW; Balajee V; Leissa J; Ashraf M; Xu X
    Int J Pharm; 2023 Jan; 631():122486. PubMed ID: 36521635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filling the Gap: A Correlation between Objective and Subjective Measures of Injectability.
    Robinson TE; Hughes EAB; Bose A; Cornish EA; Teo JY; Eisenstein NM; Grover LM; Cox SC
    Adv Healthc Mater; 2020 Mar; 9(5):e1901521. PubMed ID: 31977153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer.
    Allahham A; Stewart P; Marriott J; Mainwaring DE
    Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions.
    Allmendinger A; Fischer S; Huwyler J; Mahler HC; Schwarb E; Zarraga IE; Mueller R
    Eur J Pharm Biopharm; 2014 Jul; 87(2):318-28. PubMed ID: 24560966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation the injectability of injectable microparticle delivery systems on the basis of injection force and discharged rate.
    Zhao C; Zhu Z; Cao X; Pan F; Li F; Xue M; Guo Y; Zhao Y; Zeng J; Liu Y; Yang Z; Liu Y; Ren F; Feng L
    Eur J Pharm Biopharm; 2023 Sep; 190():58-72. PubMed ID: 37437667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery Considerations of Highly Viscous Polymeric Fluids Mimicking Concentrated Biopharmaceuticals: Assessment of Injectability via Measurement of Total Work Done "W
    Zhang Q; Fassihi MA; Fassihi R
    AAPS PharmSciTech; 2018 May; 19(4):1520-1528. PubMed ID: 29464592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of injection forces for highly concentrated protein solutions.
    Fischer I; Schmidt A; Bryant A; Besheer A
    Int J Pharm; 2015 Sep; 493(1-2):70-4. PubMed ID: 26211901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue Resistance during Large-Volume Injections in Subcutaneous Tissue of Minipigs.
    Allmendinger A; Fischer S
    Pharm Res; 2020 Sep; 37(10):184. PubMed ID: 32888065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on Gliding and Discharge Performance of Suspended Injection from Syringe -Effect of Diameter Ratio of Suspending Particle against Needle Hole on Needle Passageability].
    Niwa T; Morisaki M; Kondo K; Nakashima A
    Yakugaku Zasshi; 2020; 140(5):711-722. PubMed ID: 32378675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing injection force modeling and viscosity-dependent injectability evaluation for prefilled syringes.
    Wu L; Li H; Wang Y; Liu C; Zhao Z; Zhuang G; Chen Q; Zhou W; Guo J
    Eur J Pharm Biopharm; 2024 Apr; 197():114221. PubMed ID: 38378097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Needle Manufacturing, Quality Control, and Optimization for Patient Comfort.
    Moustafa F; Hoverson K; Dover JS; Arndt KA
    J Drugs Dermatol; 2021 Jan; 20(1):44-48. PubMed ID: 33400423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Quantification of Injectability by Mechanical Testing.
    Robinson TE; Hughes EAB; Eisenstein NM; Grover LM; Cox SC
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Injectability of High Concentration Drug Formulations Using Core Annular Flows.
    Jayaprakash V; Costalonga M; Dhulipala S; Varanasi KK
    Adv Healthc Mater; 2020 Sep; 9(18):e2001022. PubMed ID: 32830449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the effect of counterpressure buildup during syringe injections.
    Shahriar M; Rewanwar A; Rohilla P; Marston J
    Int J Pharm; 2021 Jun; 602():120530. PubMed ID: 33811964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and application of a micro-capillary rheometer for in-vitro evaluation of parenteral injectability.
    Allahham A; Mainwaring D; Stewart P; Marriott J
    J Pharm Pharmacol; 2004 Jun; 56(6):709-16. PubMed ID: 15231035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcutaneous Injection of Drugs: Literature Review of Factors Influencing Pain Sensation at the Injection Site.
    Usach I; Martinez R; Festini T; Peris JE
    Adv Ther; 2019 Nov; 36(11):2986-2996. PubMed ID: 31587143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.