BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 21553891)

  • 41. Enhanced performance of a dye-sensitized solar cell with the incorporation of titanium carbide in the TiO2 matrix.
    Lee CP; Chen PY; Vittal R; Ho KC
    Phys Chem Chem Phys; 2010 Aug; 12(32):9249-55. PubMed ID: 20571617
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of iodide concentration on the efficiency and stability of dye-sensitized solar cell containing non-volatile electrolyte.
    Zhang Z; Ito S; Moser JE; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Aug; 10(11):1834-8. PubMed ID: 19472254
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photovoltaic properties of dye-sensitized solar cells associated with amphiphilic structure of ruthenium complex dyes.
    Liu KY; Hsu CL; Ni JS; Ho KC; Lin KF
    J Colloid Interface Sci; 2012 Apr; 372(1):73-9. PubMed ID: 22331035
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.
    Bai Y; Zhang J; Wang Y; Zhang M; Wang P
    Langmuir; 2011 Apr; 27(8):4749-55. PubMed ID: 21438523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass.
    Stergiopoulos T; Valota A; Likodimos V; Speliotis T; Niarchos D; Skeldon P; Thompson GE; Falaras P
    Nanotechnology; 2009 Sep; 20(36):365601. PubMed ID: 19687543
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-temperature UV processing of nanoporous SnO₂ layers for dye-sensitized solar cells.
    Tebby Z; Uddin T; Nicolas Y; Olivier C; Toupance T; Labrugère C; Hirsch L
    ACS Appl Mater Interfaces; 2011 May; 3(5):1485-91. PubMed ID: 21443254
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles.
    Cheng HM; Hsieh WF
    Nanotechnology; 2010 Dec; 21(48):485202. PubMed ID: 21051799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A dendritic oligothiophene ruthenium sensitizer for stable dye-sensitized solar cells.
    Sauvage F; Fischer MK; Mishra A; Zakeeruddin SM; Nazeeruddin MK; Bäuerle P; Grätzel M
    ChemSusChem; 2009; 2(8):761-8. PubMed ID: 19569164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.
    Bai Y; Cao Y; Zhang J; Wang M; Li R; Wang P; Zakeeruddin SM; Grätzel M
    Nat Mater; 2008 Aug; 7(8):626-30. PubMed ID: 18587401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benzotriazole-bridged sensitizers containing a furan moiety for dye-sensitized solar cells with high open-circuit voltage performance.
    Mao J; Guo F; Ying W; Wu W; Li J; Hua J
    Chem Asian J; 2012 May; 7(5):982-91. PubMed ID: 22328182
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions.
    Ko KH; Lee YC; Jung YJ
    J Colloid Interface Sci; 2005 Mar; 283(2):482-7. PubMed ID: 15721923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.
    Wang Q; Moser JE; Grätzel M
    J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells.
    Zheng Q; Kang H; Yun J; Lee J; Park JH; Baik S
    ACS Nano; 2011 Jun; 5(6):5088-93. PubMed ID: 21598982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TiO₂ nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor.
    Sharmoukh W; Allam NK
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4413-8. PubMed ID: 22799457
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modification of TiO₂ electrode with organic silane interposed layer for high-performance of dye-sensitized solar cells.
    Sewvandi GA; Tao Z; Kusunose T; Tanaka Y; Nakanishi S; Feng Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5818-26. PubMed ID: 24684283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells.
    Joshi P; Zhang L; Chen Q; Galipeau D; Fong H; Qiao Q
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3572-7. PubMed ID: 21073177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Viable alternative to N719 for dye-sensitized solar cells.
    Sun Y; Onicha AC; Myahkostupov M; Castellano FN
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):2039-45. PubMed ID: 20565060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of photocurrent in dye sensitized solar cells incorporating a cyclometalated ruthenium complex with cuprous iodide as an electrolyte additive.
    Kisserwan H; Ghaddar TH
    Dalton Trans; 2011 Apr; 40(15):3877-84. PubMed ID: 21308133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.