These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Efficient constrained multiple sequence alignment with performance guarantee. Chin FY; Ho NL; Lam TW; Wong PW; Chan MY Proc IEEE Comput Soc Bioinform Conf; 2003; 2():337-46. PubMed ID: 16452809 [TBL] [Abstract][Full Text] [Related]
7. A fast algorithm for the optimal alignment of three strings. Allison L J Theor Biol; 1993 Sep; 164(2):261-9. PubMed ID: 8246519 [TBL] [Abstract][Full Text] [Related]
8. A genetic algorithm for multiple molecular sequence alignment. Zhang C; Wong AK Comput Appl Biosci; 1997 Dec; 13(6):565-81. PubMed ID: 9475984 [TBL] [Abstract][Full Text] [Related]
9. Faster algorithms for optimal multiple sequence alignment based on pairwise comparisons. Bilu Y; Agarwal PK; Kolodny R IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):408-22. PubMed ID: 17085849 [TBL] [Abstract][Full Text] [Related]
10. Searching protein 3-D structures in linear time. Shibuya T J Comput Biol; 2010 Mar; 17(3):203-19. PubMed ID: 20377441 [TBL] [Abstract][Full Text] [Related]
11. A faster algorithm for simultaneous alignment and folding of RNA. Ziv-Ukelson M; Gat-Viks I; Wexler Y; Shamir R J Comput Biol; 2010 Aug; 17(8):1051-65. PubMed ID: 20649420 [TBL] [Abstract][Full Text] [Related]
12. A Provably Efficient Algorithm for the k-Mismatch Average Common Substring Problem. Thankachan SV; Apostolico A; Aluru S J Comput Biol; 2016 Jun; 23(6):472-82. PubMed ID: 27058840 [TBL] [Abstract][Full Text] [Related]
13. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model. Chen ZZ; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867 [TBL] [Abstract][Full Text] [Related]
14. Using iterative methods for global multiple sequence alignment. Mount DW Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top44. PubMed ID: 20147225 [TBL] [Abstract][Full Text] [Related]
15. Lifting prediction to alignment of RNA pseudoknots. Möhl M; Will S; Backofen R J Comput Biol; 2010 Mar; 17(3):429-42. PubMed ID: 20377455 [TBL] [Abstract][Full Text] [Related]
16. Pattern-constrained multiple polypeptide sequence alignment. Du Z; Lin F Comput Biol Chem; 2005 Aug; 29(4):303-7. PubMed ID: 16040276 [TBL] [Abstract][Full Text] [Related]
17. A memory-efficient algorithm for multiple sequence alignment with constraints. Lu CL; Huang YP Bioinformatics; 2005 Jan; 21(1):20-30. PubMed ID: 15374876 [TBL] [Abstract][Full Text] [Related]
18. Optimal amnesic probabilistic automata or how to learn and classify proteins in linear time and space. Apostolico A; Bejerano G J Comput Biol; 2000; 7(3-4):381-93. PubMed ID: 11108469 [TBL] [Abstract][Full Text] [Related]
19. Super pairwise alignment (SPA): an efficient approach to global alignment for homologous sequences. Shen SY; Yang J; Yao A; Hwang PI J Comput Biol; 2002; 9(3):477-86. PubMed ID: 12162887 [TBL] [Abstract][Full Text] [Related]
20. An iterative method for faster sum-of-pairs multiple sequence alignment. Reinert K; Stoye J; Will T Bioinformatics; 2000 Sep; 16(9):808-14. PubMed ID: 11108703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]