These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 21554514)
1. Bacillus cereus responses to acid stress. Mols M; Abee T Environ Microbiol; 2011 Nov; 13(11):2835-43. PubMed ID: 21554514 [TBL] [Abstract][Full Text] [Related]
2. Characterization of germination and outgrowth of sorbic acid-stressed Bacillus cereus ATCC 14579 spores: phenotype and transcriptome analysis. van Melis CC; Nierop Groot MN; Tempelaars MH; Moezelaar R; Abee T Food Microbiol; 2011 Apr; 28(2):275-83. PubMed ID: 21315984 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. Mols M; van Kranenburg R; Tempelaars MH; van Schaik W; Moezelaar R; Abee T Int J Food Microbiol; 2010 Jan; 137(1):13-21. PubMed ID: 19853945 [TBL] [Abstract][Full Text] [Related]
4. Impact of sorbic acid on germination and outgrowth heterogeneity of Bacillus cereus ATCC 14579 spores. den Besten HM; van Melis CC; Sanders JW; Nierop Groot MN; Abee T Appl Environ Microbiol; 2012 Dec; 78(23):8477-80. PubMed ID: 23001664 [TBL] [Abstract][Full Text] [Related]
5. Production and stability of chlorine dioxide in organic acid solutions as affected by pH, type of acid, and concentration of sodium chlorite, and its effectiveness in inactivating Bacillus cereus spores. Kim H; Kang Y; Beuchat LR; Ryu JH Food Microbiol; 2008 Dec; 25(8):964-9. PubMed ID: 18954731 [TBL] [Abstract][Full Text] [Related]
6. Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk. Røssland E; Langsrud T; Sørhaug T Int J Food Microbiol; 2005 Aug; 103(1):69-77. PubMed ID: 16084267 [TBL] [Abstract][Full Text] [Related]
7. Primary and secondary oxidative stress in Bacillus. Mols M; Abee T Environ Microbiol; 2011 Jun; 13(6):1387-94. PubMed ID: 21352461 [TBL] [Abstract][Full Text] [Related]
8. Spores and vegetative cells of phenotypically and genetically diverse Bacillus cereus sensu lato are common bacteria in fresh water of northeastern Poland. Bartoszewicz M; Czyżewska U Can J Microbiol; 2017 Dec; 63(12):939-950. PubMed ID: 28930645 [TBL] [Abstract][Full Text] [Related]
9. Impact of sorbic acid on germinant receptor-dependent and -independent germination pathways in Bacillus cereus. van Melis CC; Nierop Groot MN; Abee T Appl Environ Microbiol; 2011 Apr; 77(7):2552-4. PubMed ID: 21278268 [TBL] [Abstract][Full Text] [Related]
10. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Mols M; van Kranenburg R; van Melis CC; Moezelaar R; Abee T Environ Microbiol; 2010 Apr; 12(4):873-85. PubMed ID: 20074238 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Vilain S; Luo Y; Hildreth MB; Brözel VS Appl Environ Microbiol; 2006 Jul; 72(7):4970-7. PubMed ID: 16820495 [TBL] [Abstract][Full Text] [Related]
12. Deletion of sigB in Bacillus cereus affects spore properties. de Vries YP; Hornstra LM; Atmadja RD; Schaik Wv; de Vos WM; Abee T FEMS Microbiol Lett; 2005 Nov; 252(1):169-73. PubMed ID: 16171954 [TBL] [Abstract][Full Text] [Related]
13. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. Clavel T; Carlin F; Lairon D; Nguyen-The C; Schmitt P J Appl Microbiol; 2004; 97(1):214-9. PubMed ID: 15186458 [TBL] [Abstract][Full Text] [Related]
14. Physiological parameters of Bacillus cereus marking the end of acid-induced lag phases. Biesta-Peters EG; Mols M; Reij MW; Abee T Int J Food Microbiol; 2011 Jul; 148(1):42-7. PubMed ID: 21592605 [TBL] [Abstract][Full Text] [Related]
15. [Isolation, purification and identification of protective substances from a culture broth of germinating Bacillus cereus spores]. Pronin SV; Skopinskaia SN; Fenogenova SA Izv Akad Nauk SSSR Biol; 1989; (1):88-94. PubMed ID: 2497164 [TBL] [Abstract][Full Text] [Related]
16. Influence of cellular differentiation on ultraviolet induced DNA damage and its repair mechanisms in B. cereus. Kamat AS; Pradhan DS Indian J Biochem Biophys; 1991 Apr; 28(2):83-92. PubMed ID: 1908819 [TBL] [Abstract][Full Text] [Related]
17. Survival of the acid-adapted Bacillus cereus in acidic environments. Chen JL; Chiang ML; Chou CC Int J Food Microbiol; 2009 Jan; 128(3):424-8. PubMed ID: 18986725 [TBL] [Abstract][Full Text] [Related]
18. Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. Ceuppens S; Uyttendaele M; Drieskens K; Rajkovic A; Boon N; Wiele TV J Food Prot; 2012 Apr; 75(4):690-4. PubMed ID: 22488056 [TBL] [Abstract][Full Text] [Related]
19. Stimulation of germination of unactivated Bacillus cereus spores by ammonia. Preston RA; Douthit HA J Gen Microbiol; 1984 May; 130(5):1041-50. PubMed ID: 6432943 [TBL] [Abstract][Full Text] [Related]
20. Modeling the combined effect of temperature, pH, acetic and lactic acid concentrations on the growth/no growth interface of acid-tolerant Bacillus spores. Sun R; Vermeulen A; Devlieghere F Int J Food Microbiol; 2021 Dec; 360():109419. PubMed ID: 34600755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]