These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 21554516)

  • 21. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence.
    Kazmierczak BI; Schniederberend M; Jain R
    Curr Opin Microbiol; 2015 Dec; 28():78-82. PubMed ID: 26476804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of Two-Component Systems in
    Sultan M; Arya R; Kim KK
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830033
    [No Abstract]   [Full Text] [Related]  

  • 23. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function.
    Leighton TL; Buensuceso RN; Howell PL; Burrows LL
    Environ Microbiol; 2015 Nov; 17(11):4148-63. PubMed ID: 25808785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenotypic characterization of multidrug-resistant Pseudomonas aeruginosa strains isolated from pediatric patients associated to biofilm formation.
    Ochoa SA; Cruz-Córdova A; Rodea GE; Cázares-Domínguez V; Escalona G; Arellano-Galindo J; Hernández-Castro R; Reyes-López A; Xicohtencatl-Cortes J
    Microbiol Res; 2015 Mar; 172():68-78. PubMed ID: 25530579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS.
    Kong W; Chen L; Zhao J; Shen T; Surette MG; Shen L; Duan K
    Mol Microbiol; 2013 May; 88(4):784-97. PubMed ID: 23560772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of flagella-driven motility and pili in Pseudomonas aeruginosa colonization at the air-liquid interface.
    Yamamoto K; Arai H; Ishii M; Igarashi Y
    Microbes Environ; 2012; 27(3):320-3. PubMed ID: 22353768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa.
    Kuchma SL; Connolly JP; O'Toole GA
    J Bacteriol; 2005 Feb; 187(4):1441-54. PubMed ID: 15687209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review.
    Sadiq FA; Flint S; Li Y; Liu T; Lei Y; Sakandar HA; He G
    Biofouling; 2017 Apr; 33(4):306-326. PubMed ID: 28347177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.
    Chew SC; Kundukad B; Seviour T; van der Maarel JR; Yang L; Rice SA; Doyle P; Kjelleberg S
    mBio; 2014 Aug; 5(4):e01536-14. PubMed ID: 25096883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
    Ramsey MM; Whiteley M
    Mol Microbiol; 2004 Aug; 53(4):1075-87. PubMed ID: 15306012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa.
    Wang S; Liu X; Liu H; Zhang L; Guo Y; Yu S; Wozniak DJ; Ma LZ
    Environ Microbiol Rep; 2015 Apr; 7(2):330-40. PubMed ID: 25472701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa.
    O'May C; Ciobanu A; Lam H; Tufenkji N
    Biofouling; 2012; 28(10):1063-76. PubMed ID: 23020753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.
    Lee K; Lee KM; Kim D; Yoon SS
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes.
    Kulasekara HD; Ventre I; Kulasekara BR; Lazdunski A; Filloux A; Lory S
    Mol Microbiol; 2005 Jan; 55(2):368-80. PubMed ID: 15659157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities.
    Déziel E; Comeau Y; Villemur R
    J Bacteriol; 2001 Feb; 183(4):1195-204. PubMed ID: 11157931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa.
    Baraquet C; Harwood CS
    J Bacteriol; 2016 Jan; 198(1):178-86. PubMed ID: 26483521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes.
    Attila C; Ueda A; Wood TK
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):293-307. PubMed ID: 18157527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.
    O'Toole GA; Kolter R
    Mol Microbiol; 1998 Oct; 30(2):295-304. PubMed ID: 9791175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A putative LysR-type transcriptional regulator inhibits biofilm synthesis in
    Yang X; Zhang Z; Huang Z; Zhang X; Li D; Sun L; You J; Pan X; Yang H
    Biofouling; 2019 May; 35(5):541-550. PubMed ID: 31269803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal.
    Harmsen M; Yang L; Pamp SJ; Tolker-Nielsen T
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):253-68. PubMed ID: 20497222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.