BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21554542)

  • 1. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.
    Yamasaki T; Nakazaki Y; Yoshida M; Watanabe YH
    FEBS J; 2011 Jul; 278(13):2395-403. PubMed ID: 21554542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.
    Yamasaki T; Oohata Y; Nakamura T; Watanabe YH
    J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A
    Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication.
    Zeymer C; Fischer S; Reinstein J
    J Biol Chem; 2014 Nov; 289(47):32965-76. PubMed ID: 25253689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation of the amino-terminal domain of ClpB affects the disaggregation of the protein.
    Mizuno S; Nakazaki Y; Yoshida M; Watanabe YH
    FEBS J; 2012 Apr; 279(8):1474-84. PubMed ID: 22348341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of oligomerization and nucleotide binding in the AAA+ chaperone ClpB.
    Werbeck ND; Zeymer C; Kellner JN; Reinstein J
    Biochemistry; 2011 Feb; 50(5):899-909. PubMed ID: 21182296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the two wings of the coiled-coil domain of ClpB chaperone is critical for its disaggregation activity.
    Watanabe YH; Nakazaki Y; Suno R; Yoshida M
    Biochem J; 2009 Jun; 421(1):71-7. PubMed ID: 19351326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide binding and allosteric modulation of the second AAA+ domain of ClpB probed by transient kinetic studies.
    Werbeck ND; Kellner JN; Barends TR; Reinstein J
    Biochemistry; 2009 Aug; 48(30):7240-50. PubMed ID: 19594134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB.
    Lee S; Choi JM; Tsai FT
    Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical coupling of the two nucleotide binding domains of ClpB: covalent linkage is not a prerequisite for chaperone activity.
    Beinker P; Schlee S; Auvula R; Reinstein J
    J Biol Chem; 2005 Nov; 280(45):37965-73. PubMed ID: 16162497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum.
    Ngansop F; Li H; Zolkiewska A; Zolkiewski M
    Biochem Biophys Res Commun; 2013 Sep; 439(2):191-5. PubMed ID: 23994135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide utilization requirements that render ClpB active as a chaperone.
    del Castillo U; Fernández-Higuero JA; Pérez-Acebrón S; Moro F; Muga A
    FEBS Lett; 2010 Mar; 584(5):929-34. PubMed ID: 20085762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.
    Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B
    J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate recognition by the AAA+ chaperone ClpB.
    Schlieker C; Weibezahn J; Patzelt H; Tessarz P; Strub C; Zeth K; Erbse A; Schneider-Mergener J; Chin JW; Schultz PG; Bukau B; Mogk A
    Nat Struct Mol Biol; 2004 Jul; 11(7):607-15. PubMed ID: 15208691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system.
    Klostermeier D; Seidel R; Reinstein J
    J Mol Biol; 1999 Apr; 287(3):511-25. PubMed ID: 10092456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB.
    Werbeck ND; Schlee S; Reinstein J
    J Mol Biol; 2008 Apr; 378(1):178-90. PubMed ID: 18343405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase.
    Fodje MN; Hansson A; Hansson M; Olsen JG; Gough S; Willows RD; Al-Karadaghi S
    J Mol Biol; 2001 Aug; 311(1):111-22. PubMed ID: 11469861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.