These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 21554568)
21. Impact of environmental factors on Streptomyces spp. metabolites against Botrytis cinerea. Boukaew S; Yossan S; Cheirsilp B; Prasertsan P J Basic Microbiol; 2022 May; 62(5):611-622. PubMed ID: 35064583 [TBL] [Abstract][Full Text] [Related]
22. Sensitivity of Dėnė L; Valiuškaitė A Molecules; 2021 Jul; 26(15):. PubMed ID: 34361746 [TBL] [Abstract][Full Text] [Related]
23. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea. Zhang Y; Wang C; Su P; Liao X PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973 [TBL] [Abstract][Full Text] [Related]
24. Antifungal effect of 405-nm light on Botrytis cinerea. Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427 [TBL] [Abstract][Full Text] [Related]
26. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Soylu EM; Kurt S; Soylu S Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038 [TBL] [Abstract][Full Text] [Related]
27. Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.). Ahmadu T; Ahmad K; Ismail SI; Rashed O; Asib N; Omar D Braz J Biol; 2021; 81(4):1007-1022. PubMed ID: 33175006 [TBL] [Abstract][Full Text] [Related]
28. Antifungal activities of N-arylbenzenesulfonamides against phytopathogens and control efficacy on wheat leaf rust and cabbage club root diseases. Kang JG; Hur JH; Choi SJ; Choi GJ; Cho KY; Ten LN; Park KH; Kang KY Biosci Biotechnol Biochem; 2002 Dec; 66(12):2677-82. PubMed ID: 12596866 [TBL] [Abstract][Full Text] [Related]
29. Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea. Feng B; Li P; Chen D; Ding C Folia Microbiol (Praha); 2024 Apr; 69(2):361-371. PubMed ID: 37436591 [TBL] [Abstract][Full Text] [Related]
30. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. Kefi A; Ben Slimene I; Karkouch I; Rihouey C; Azaeiz S; Bejaoui M; Belaid R; Cosette P; Jouenne T; Limam F World J Microbiol Biotechnol; 2015 Dec; 31(12):1967-76. PubMed ID: 26347324 [TBL] [Abstract][Full Text] [Related]
31. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470 [TBL] [Abstract][Full Text] [Related]
32. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea. Maung CEH; Lee HG; Cho JY; Kim KY World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104 [TBL] [Abstract][Full Text] [Related]
33. Screening and identification of antagonistic actinomycete LA-5 against Botrytis cinerea. Li PQ; Feng BZ; Li XX; Hao HY Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):4172-4180. PubMed ID: 30584746 [TBL] [Abstract][Full Text] [Related]
34. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. Kruijt M; Tran H; Raaijmakers JM J Appl Microbiol; 2009 Aug; 107(2):546-56. PubMed ID: 19302489 [TBL] [Abstract][Full Text] [Related]
35. Determination of Reactive Oxygen or Nitrogen Species and Novel Volatile Organic Compounds in the Defense Responses of Tomato Plants against Nawrocka J; Szymczak K; Maćkowiak A; Skwarek-Fadecka M; Małolepsza U Cells; 2022 Sep; 11(19):. PubMed ID: 36231012 [TBL] [Abstract][Full Text] [Related]
36. Antifungal activity of liquiritin in Phytophthora capsici comprises not only membrane-damage-mediated autophagy, apoptosis, and Ca Liu P; Cai Y; Zhang J; Wang R; Li B; Weng Q; Chen Q Ecotoxicol Environ Saf; 2021 Feb; 209():111813. PubMed ID: 33360212 [TBL] [Abstract][Full Text] [Related]
37. Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. Puopolo G; Cimmino A; Palmieri MC; Giovannini O; Evidente A; Pertot I J Appl Microbiol; 2014 Oct; 117(4):1168-80. PubMed ID: 25066530 [TBL] [Abstract][Full Text] [Related]
38. Antifungal activity of the botanical compound rhein against Phytophthora capsici and the underlying mechanisms. Wang B; Yang J; Zhao X; Feng X; Xu S; Li P; Li L; Chen Y Pest Manag Sci; 2024 Mar; 80(3):1228-1239. PubMed ID: 37897133 [TBL] [Abstract][Full Text] [Related]
39. Isolation of anthraquinone derivatives from Rubia cordifolia (Rubiaceae) and their bioactivities against plant pathogenic microorganisms. Wang W; Guo Y; Xu J; Zhang H; Ma Z; Wu H Pest Manag Sci; 2024 Sep; 80(9):4617-4627. PubMed ID: 38747671 [TBL] [Abstract][Full Text] [Related]
40. Microbial conversion and in vitro and in vivo antifungal assessment of bioconverted docosahexaenoic acid (bDHA) used against agricultural plant pathogenic fungi. Bajpai VK; Kim HR; Hou CT; Kang SC J Ind Microbiol Biotechnol; 2009 May; 36(5):695-704. PubMed ID: 19259715 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]