BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21554771)

  • 41. Gap junctions in ovarian follicles of Drosophila melanogaster: inhibition and promotion of dye-coupling between oocyte and follicle cells.
    Bohrmann J; Haas-Assenbaum A
    Cell Tissue Res; 1993 Jul; 273(1):163-73. PubMed ID: 8364958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ovarian nutritional resources during the reproductive cycle of the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae): focus on lipid metabolism.
    Leyria J; Fruttero LL; Aguirre SA; Canavoso LE
    Arch Insect Biochem Physiol; 2014 Nov; 87(3):148-63. PubMed ID: 25052220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ferromagnetic isolation of endosomes involved in vitellogenin transfer into Xenopus oocytes.
    Richter HP; Bauer A
    Eur J Cell Biol; 1990 Feb; 51(1):53-63. PubMed ID: 1970297
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A nonsteroidal follicular factor is involved in maturation process of Xenopus laevis oocytes.
    Chesnel F; Bourry A; Boujard D; Joly J
    Gen Comp Endocrinol; 1992 May; 86(2):304-12. PubMed ID: 1601280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of oogenesis: the piscine receptor for vitellogenin.
    Stifani S; Le Menn F; Rodriguez JN; Schneider WJ
    Biochim Biophys Acta; 1990 Aug; 1045(3):271-9. PubMed ID: 2167133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of sheep oocyte maturation using cAMP modulators.
    Rose RD; Gilchrist RB; Kelly JM; Thompson JG; Sutton-McDowall ML
    Theriogenology; 2013 Jan; 79(1):142-8. PubMed ID: 23102843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation.
    Cerdá JL; Petrino TR; Wallace RA
    Dev Biol; 1993 Nov; 160(1):228-35. PubMed ID: 8224539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activin incorporation into vitellogenic oocytes of Xenopus laevis.
    Fukui A; Shiurba R; Asashima M
    Cell Mol Biol (Noisy-le-grand); 1999 Jul; 45(5):545-54. PubMed ID: 10512187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of a chloride channel inhibitor and chloride-free medium on choriogonin-induced cAMP formation by Xenopus laevis follicles].
    Skoblina MN; Khukhtaniemi I
    Ontogenez; 1998; 29(3):178-80. PubMed ID: 9702794
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient.
    Danilchik MV; Gerhart JC
    Dev Biol; 1987 Jul; 122(1):101-12. PubMed ID: 3596006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bovine cumulus cell-oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3',5'-monophosophate levels.
    Thomas RE; Armstrong DT; Gilchrist RB
    Biol Reprod; 2004 Mar; 70(3):548-56. PubMed ID: 14568915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increase in intracellular cAMP is a prerequisite signal for initiation of physiological oocyte meiotic maturation in the hydrozoan Cytaeis uchidae.
    Takeda N; Kyozuka K; Deguchi R
    Dev Biol; 2006 Oct; 298(1):248-58. PubMed ID: 16884710
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ovarian expression and localization of clathrin (Cltc) components in cutthroat trout, Oncorhynchus clarki: Evidence for Cltc involvement in endocytosis of vitellogenin during oocyte growth.
    Mizuta H; Mushirobira Y; Nagata J; Todo T; Hara A; Reading BJ; Sullivan CV; Hiramatsu N
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Oct; 212():24-34. PubMed ID: 28687414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of cadmium on oogenesis in Xenopus laevis.
    Lienesch LA; Dumont JN; Bantle JA
    Chemosphere; 2000 Nov; 41(10):1651-8. PubMed ID: 11057693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Zinc uptake and distribution in Xenopus laevis oocytes and embryos.
    Falchuk KH; Montorzi M; Vallee BL
    Biochemistry; 1995 Dec; 34(50):16524-31. PubMed ID: 8845382
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand.
    Opresko L; Wiley HS; Wallace RA
    Cell; 1980 Nov; 22(1 Pt 1):47-57. PubMed ID: 7428040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oocyte growth in the sheepshead minnow: uptake of exogenous proteins by vitellogenic oocytes.
    Selman K; Wallace RA
    Tissue Cell; 1982; 14(3):555-71. PubMed ID: 7147228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cyclic nucleotide-dependent protein phosphorylation in vitellogenic follicles of Hyalophora cecropia.
    Wang Y; Telfer WH
    Insect Biochem Mol Biol; 2000 Jan; 30(1):29-34. PubMed ID: 10646968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oogenesis in Xenopus laevis (Daudin). IV. Effects of gonadotropin, estrogen and starvation on endocytosis in developing oocytes.
    Holland CA; Dumont JN
    Cell Tissue Res; 1975 Sep; 162(2):177-84. PubMed ID: 1181038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray absorption fine structure as a monitor of zinc coordination sites during oogenesis of Xenopus laevis.
    Auld DS; Falchuk KH; Zhang K; Montorzi M; Vallee BL
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3227-31. PubMed ID: 8622918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.