These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21555268)

  • 1. Determination of stress responses induced by aluminum in maize (Zea mays).
    Vardar F; Ismailoğlu I; Inan D; Unal M
    Acta Biol Hung; 2011 Jun; 62(2):156-70. PubMed ID: 21555268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminum-induced oxidative stress in maize.
    Boscolo PR; Menossi M; Jorge RA
    Phytochemistry; 2003 Jan; 62(2):181-9. PubMed ID: 12482454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation.
    Giannakoula A; Moustakas M; Mylona P; Papadakis I; Yupsanis T
    J Plant Physiol; 2008 Mar; 165(4):385-96. PubMed ID: 17646031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for cyclic hydroxamates in aluminium resistance in maize?
    Poschenrieder C; Tolrà RP; Barceló J
    J Inorg Biochem; 2005 Sep; 99(9):1830-6. PubMed ID: 16054220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots.
    Jones DL; Blancaflor EB; Kochian LV; Gilroy S
    Plant Cell Environ; 2006 Jul; 29(7):1309-18. PubMed ID: 17080952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays.
    Duquesnoy I; Champeau GM; Evray G; Ledoigt G; Piquet-Pissaloux A
    C R Biol; 2010; 333(11-12):814-24. PubMed ID: 21146138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance.
    Amenós M; Corrales I; Poschenrieder C; Illés P; Baluska F; Barceló J
    Plant Cell Physiol; 2009 Mar; 50(3):528-40. PubMed ID: 19176573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth.
    Wang L; Fan XW; Pan JL; Huang ZB; Li YZ
    Planta; 2015 Dec; 242(6):1391-403. PubMed ID: 26253178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.).
    Kidd PS; Llugany M; Poschenrieder C; Gunsé B; Barceló J
    J Exp Bot; 2001 Jun; 52(359):1339-52. PubMed ID: 11432953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize.
    Piñeros MA; Magalhaes JV; Carvalho Alves VM; Kochian LV
    Plant Physiol; 2002 Jul; 129(3):1194-206. PubMed ID: 12114573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).
    Chen J; Dou R; Yang Z; Wang X; Mao C; Gao X; Wang L
    Nanotoxicology; 2016 Aug; 10(6):818-28. PubMed ID: 26694806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root cell patterning: a primary target for aluminium toxicity in maize.
    Doncheva S; Amenós M; Poschenrieder C; Barceló J
    J Exp Bot; 2005 Apr; 56(414):1213-20. PubMed ID: 15737983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum mediates compositional alterations of polar lipid classes in maize seedlings.
    Chaffai R; Marzouk B; El Ferjani E
    Phytochemistry; 2005 Aug; 66(16):1903-12. PubMed ID: 16099483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of 1,3-beta-D-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum.
    Bhuja P; McLachlan K; Stephens J; Taylor G
    Plant Cell Physiol; 2004 May; 45(5):543-9. PubMed ID: 15169936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminium rhizotoxicity in maize grown in solutions with Al3+ or Al(OH)-4 as predominant solution Al species.
    Stass A; Wang Y; Eticha D; Horst WJ
    J Exp Bot; 2006; 57(15):4033-42. PubMed ID: 17105968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue.
    Sunohara Y; Matsumoto H
    Phytochemistry; 2008 Sep; 69(12):2312-9. PubMed ID: 18674787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative analysis of fatty acid composition of root and shoot lipids in Zea mays under copper and cadmium stress.
    Chaffai R; Seybou TN; Marzouk B; El Ferjani E
    Acta Biol Hung; 2009 Mar; 60(1):109-25. PubMed ID: 19378928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study.
    Piñeros MA; Shaff JE; Manslank HS; Alves VM; Kochian LV
    Plant Physiol; 2005 Jan; 137(1):231-41. PubMed ID: 15591441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots.
    Yamamoto Y; Kobayashi Y; Matsumoto H
    Plant Physiol; 2001 Jan; 125(1):199-208. PubMed ID: 11154329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize.
    Wang Y; Stass A; Horst WJ
    Plant Physiol; 2004 Nov; 136(3):3762-70. PubMed ID: 15502015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.