These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 2155529)

  • 41. CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH).
    Sui T; Yuan L; Liu H; Chen M; Deng J; Wang Y; Li Z; Lai L
    Hum Mol Genet; 2016 Jul; 25(13):2661-2671. PubMed ID: 27126636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 24,25 Dihydroxyvitamin D supplementation corrects hyperparathyroidism and improves skeletal abnormalities in X-linked hypophosphatemic rickets--a clinical research center study.
    Carpenter TO; Keller M; Schwartz D; Mitnick M; Smith C; Ellison A; Carey D; Comite F; Horst R; Travers R; Glorieux FH; Gundberg CM; Poole AR; Insogna KL
    J Clin Endocrinol Metab; 1996 Jun; 81(6):2381-8. PubMed ID: 8964881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vibrational spectroscopic analysis of hydroxyapatite in HYP mice and individuals with X-linked hypophosphatemia.
    Amenta E; King HE; Petermann H; Uskoković V; Tommasini SM; Macica CM
    Ther Adv Chronic Dis; 2018; 9(12):268-281. PubMed ID: 30719271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets.
    Sullivan W; Carpenter T; Glorieux F; Travers R; Insogna K
    J Clin Endocrinol Metab; 1992 Sep; 75(3):879-85. PubMed ID: 1517380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bone mineral density of the spine and radius shaft in children with X-linked hypophosphatemic rickets (XLH).
    Oliveri MB; Cassinelli H; Bergadá C; Mautalen CA
    Bone Miner; 1991 Feb; 12(2):91-100. PubMed ID: 2015415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. X-linked hypophosphatemic rickets: a study (with literature review) of linear growth response to calcitriol and phosphate therapy.
    Petersen DJ; Boniface AM; Schranck FW; Rupich RC; Whyte MP
    J Bone Miner Res; 1992 Jun; 7(6):583-97. PubMed ID: 1414477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histologic evidence of calcification abnormalities in teeth and alveolar bone of mice with X-linked dominant hypophosphatemia (VDRR).
    Iorio RJ; Bell WA; Meyer MH; Meyer RA
    Ann Dent; 1979; 38(2):38-44. PubMed ID: 219760
    [No Abstract]   [Full Text] [Related]  

  • 48. The effects of Mendelian mutation on renal sulfate and phosphate transport in man and mouse.
    Cole DE; Scriver CR
    Pediatr Res; 1984 Jan; 18(1):25-9. PubMed ID: 6701031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia.
    Tenenhouse HS; Scriver CR
    J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Renal Na(+)-phosphate cotransport in X-linked Hyp mice responds appropriately to Na+ gradient, membrane potential, and pH.
    Harvey N; Tenenhouse HS
    J Bone Miner Res; 1992 May; 7(5):563-71. PubMed ID: 1319668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Serum 1,25-dihydroxyvitamin D levels in subjects with X-linked hypophosphatemic rickets and osteomalacia.
    Lyles KW; Clark AG; Drezner MK
    Calcif Tissue Int; 1982 Mar; 34(2):125-30. PubMed ID: 6282408
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Specific internalization and action of 1,25-dihydroxyvitamin D3 in cultured dermal fibroblasts from patients with X-linked hypophosphatemia.
    Adams JS; Gacad MA; Singer FR
    J Clin Endocrinol Metab; 1984 Sep; 59(3):556-60. PubMed ID: 6547728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Normal regulation of calcitriol production in Gy mice. Evidence for biochemical heterogeneity in the X-linked hypophosphatemic diseases.
    Davidai GA; Nesbitt T; Drezner MK
    J Clin Invest; 1990 Feb; 85(2):334-9. PubMed ID: 2153705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. X-linked hypophosphatemia: Management and treatment prospects.
    Lambert AS; Zhukouskaya V; Rothenbuhler A; Linglart A
    Joint Bone Spine; 2019 Nov; 86(6):731-738. PubMed ID: 30711691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. X-linked hypophosphataemia: a homologous disorder in humans and mice.
    Tenenhouse HS
    Nephrol Dial Transplant; 1999 Feb; 14(2):333-41. PubMed ID: 10069185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping of human X-linked hypophosphataemic rickets by multilocus linkage analysis.
    Read AP; Thakker RV; Davies KE; Mountford RC; Brenton DP; Davies M; Glorieux F; Harris R; Hendy GN; King A
    Hum Genet; 1986 Jul; 73(3):267-70. PubMed ID: 3015770
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dental management of patients with X-linked hypophosphatemia.
    Lee BN; Jung HY; Chang HS; Hwang YC; Oh WM
    Restor Dent Endod; 2017 May; 42(2):146-151. PubMed ID: 28503481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three novel PHEX gene mutations in Japanese patients with X-linked hypophosphatemic rickets.
    Sato K; Tajima T; Nakae J; Adachi M; Asakura Y; Tachibana K; Suwa S; Katsumata N; Tanaka T; Hayashi Y; Abe S; Murashita M; Okuhara K; Shinohara N; Fujieda K
    Pediatr Res; 2000 Oct; 48(4):536-40. PubMed ID: 11004247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia.
    Sabbagh Y; Jones AO; Tenenhouse HS
    Hum Mutat; 2000; 16(1):1-6. PubMed ID: 10874297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets.
    Eicher EM; Southard JL; Scriver CR; Glorieux FH
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4667-71. PubMed ID: 188049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.