These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21555459)

  • 21. Three-dimensional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas reinhardtii.
    O'Toole ET; Giddings TH; McIntosh JR; Dutcher SK
    Mol Biol Cell; 2003 Jul; 14(7):2999-3012. PubMed ID: 12857881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga.
    Sanyal SK; Awasthi M; Ranjan P; Sharma S; Pandey GK; Kateriya S
    Int J Biol Macromol; 2023 Aug; 245():125492. PubMed ID: 37343610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The UNI1 and UNI2 genes function in the transition of triplet to doublet microtubules between the centriole and cilium in Chlamydomonas.
    Piasecki BP; Silflow CD
    Mol Biol Cell; 2009 Jan; 20(1):368-78. PubMed ID: 19005206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flagellar-associated Protein FAP85 Is a Microtubule Inner Protein That Stabilizes Microtubules.
    Kirima J; Oiwa K
    Cell Struct Funct; 2018 Feb; 43(1):1-14. PubMed ID: 29311430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Babo1, formerly Vop1 and Cop1/2, is no eyespot photoreceptor but a basal body protein illuminating cell division in Volvox carteri.
    von der Heyde EL; Hallmann A
    Plant J; 2020 Apr; 102(2):276-298. PubMed ID: 31778231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the EYE2 gene required for eyespot assembly in Chlamydomonas reinhardtii.
    Roberts DG; Lamb MR; Dieckmann CL
    Genetics; 2001 Jul; 158(3):1037-49. PubMed ID: 11454753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into degradation and targeting of the photoreceptor channelrhodopsin-1.
    Wolfram M; Greif A; Baidukova O; Voll H; Tauber S; Lindacher J; Hegemann P; Kreimer G
    Plant Cell Environ; 2024 Nov; 47(11):4188-4211. PubMed ID: 38935876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body.
    Geimer S; Melkonian M
    J Cell Sci; 2004 Jun; 117(Pt 13):2663-74. PubMed ID: 15138287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Channelrhodopsin-Dependent Photo-Behavioral Responses in the Unicellular Green Alga Chlamydomonas reinhardtii.
    Wakabayashi KI; Isu A; Ueki N
    Adv Exp Med Biol; 2021; 1293():21-33. PubMed ID: 33398805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexural Rigidity and Shear Stiffness of Flagella Estimated from Induced Bends and Counterbends.
    Xu G; Wilson KS; Okamoto RJ; Shao JY; Dutcher SK; Bayly PV
    Biophys J; 2016 Jun; 110(12):2759-2768. PubMed ID: 27332134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses.
    Fuhrmann M; Stahlberg A; Govorunova E; Rank S; Hegemann P
    J Cell Sci; 2001 Nov; 114(Pt 21):3857-63. PubMed ID: 11719552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the central pair microtubule complex in Chlamydomonas reinhardtii.
    Mitchell DR; Smith B
    Methods Cell Biol; 2009; 92():197-213. PubMed ID: 20409807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation.
    Tsunoda SP; Hegemann P
    Photochem Photobiol; 2009; 85(2):564-9. PubMed ID: 19192197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacological and genetic evidence for a role of rootlet and phycoplast microtubules in the positioning and assembly of cleavage furrows in Chlamydomonas reinhardtii.
    Ehler LL; Dutcher SK
    Cell Motil Cytoskeleton; 1998; 40(2):193-207. PubMed ID: 9634216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii.
    Esparza JM; O'Toole E; Li L; Giddings TH; Kozak B; Albee AJ; Dutcher SK
    PLoS One; 2013; 8(1):e53940. PubMed ID: 23320108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum.
    Bernstein M; Beech PL; Katz SG; Rosenbaum JL
    J Cell Biol; 1994 Jun; 125(6):1313-26. PubMed ID: 8207060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlamydomonas as a tool to study tubulin polyglutamylation.
    Kubo T; Oda T
    Microscopy (Oxf); 2019 Feb; 68(1):80-91. PubMed ID: 30364995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii.
    Preble AM; Giddings TH; Dutcher SK
    Genetics; 2001 Jan; 157(1):163-81. PubMed ID: 11139500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Ultrastructural organization and composition of carotenoids in the eyespot in the mutant Chlamydomonas reinhardtii].
    Ladygin VG; Semenova GA
    Tsitologiia; 2014; 56(1):48-56. PubMed ID: 25509143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii.
    Derguini F; Mazur P; Nakanishi K; Starace DM; Saranak J; Foster KW
    Photochem Photobiol; 1991 Dec; 54(6):1017-21. PubMed ID: 1775526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.