These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 21555650)

  • 1. Critical role of PINK1 in regulating Parkin protein levels in vivo.
    Choo YS; Tang C; Zhang Z
    Arch Neurol; 2011 May; 68(5):684-5. PubMed ID: 21555650
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular interaction between parkin and PINK1 in mammalian neuronal cells.
    Um JW; Stichel-Gunkel C; Lübbert H; Lee G; Chung KC
    Mol Cell Neurosci; 2009 Apr; 40(4):421-32. PubMed ID: 19167501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-content functional genomic screening to identify novel regulators of the PINK1-Parkin pathway.
    Ng AC; Baird SD; Screaton RA
    Methods Enzymol; 2014; 547():1-20. PubMed ID: 25416349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parkin stabilizes PINK1 through direct interaction.
    Shiba K; Arai T; Sato S; Kubo S; Ohba Y; Mizuno Y; Hattori N
    Biochem Biophys Res Commun; 2009 Jun; 383(3):331-5. PubMed ID: 19358826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Comparison of the Activity Requirements and Substrate Specificity of Human and Triboleum castaneum PINK1 Orthologues.
    Aerts L; Craessaerts K; De Strooper B; Morais VA
    PLoS One; 2016; 11(1):e0146083. PubMed ID: 26784449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium induces mitophagy through ROS-mediated PINK1/Parkin pathway.
    Wei X; Qi Y; Zhang X; Qiu Q; Gu X; Tao C; Huang D; Zhang Y
    Toxicol Mech Methods; 2014 Oct; 24(7):504-11. PubMed ID: 25052713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation.
    Kim Y; Park J; Kim S; Song S; Kwon SK; Lee SH; Kitada T; Kim JM; Chung J
    Biochem Biophys Res Commun; 2008 Dec; 377(3):975-80. PubMed ID: 18957282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients.
    Rakovic A; Grünewald A; Seibler P; Ramirez A; Kock N; Orolicki S; Lohmann K; Klein C
    Hum Mol Genet; 2010 Aug; 19(16):3124-37. PubMed ID: 20508036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a common biological pathway linking three Parkinson's disease-causing genes: parkin, PINK1 and DJ-1.
    van der Merwe C; Jalali Sefid Dashti Z; Christoffels A; Loos B; Bardien S
    Eur J Neurosci; 2015 May; 41(9):1113-25. PubMed ID: 25761903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease.
    Dodson MW; Guo M
    Curr Opin Neurobiol; 2007 Jun; 17(3):331-7. PubMed ID: 17499497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease.
    Um JW; Park HJ; Song J; Jeon I; Lee G; Lee PH; Chung KC
    Biochem Biophys Res Commun; 2010 Mar; 393(4):824-8. PubMed ID: 20171192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering.
    Shiba-Fukushima K; Arano T; Matsumoto G; Inoshita T; Yoshida S; Ishihama Y; Ryu KY; Nukina N; Hattori N; Imai Y
    PLoS Genet; 2014 Dec; 10(12):e1004861. PubMed ID: 25474007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parkin: a multifaceted ubiquitin ligase.
    Moore DJ
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):749-53. PubMed ID: 17052189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The endoplasmic reticulum/mitochondria interface: a subcellular platform for the orchestration of the functions of the PINK1-Parkin pathway?
    Erpapazoglou Z; Corti O
    Biochem Soc Trans; 2015 Apr; 43(2):297-301. PubMed ID: 25849933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders.
    Wilhelmus MM; Nijland PG; Drukarch B; de Vries HE; van Horssen J
    Free Radic Biol Med; 2012 Aug; 53(4):983-92. PubMed ID: 22687462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitophagy: the latest problem for Parkinson's disease.
    Vives-Bauza C; Przedborski S
    Trends Mol Med; 2011 Mar; 17(3):158-65. PubMed ID: 21146459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease.
    Corti O; Brice A
    Curr Opin Neurobiol; 2013 Feb; 23(1):100-8. PubMed ID: 23206589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PINK1 gene knockdown leads to increased binding of parkin with actin filament.
    Kim KH; Son JH
    Neurosci Lett; 2010 Jan; 468(3):272-6. PubMed ID: 19909785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss-of-function rodent models for parkin and PINK1.
    Oliveras-Salvá M; Van Rompuy AS; Heeman B; Van den Haute C; Baekelandt V
    J Parkinsons Dis; 2011; 1(3):229-51. PubMed ID: 23939304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pink1, the first ubiquitin kinase.
    Zheng X; Hunter T
    EMBO J; 2014 Aug; 33(15):1621-3. PubMed ID: 24942162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.