These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21555783)

  • 1. MicroRNAs and glial cell development.
    Zheng K; Li H; Huang H; Qiu M
    Neuroscientist; 2012 Apr; 18(2):114-8. PubMed ID: 21555783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased NG2(+) glial cell proliferation and oligodendrocyte generation in the hypomyelinating mutant shiverer.
    Bu J; Banki A; Wu Q; Nishiyama A
    Glia; 2004 Oct; 48(1):51-63. PubMed ID: 15326615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sox2 Is Essential for Oligodendroglial Proliferation and Differentiation during Postnatal Brain Myelination and CNS Remyelination.
    Zhang S; Zhu X; Gui X; Croteau C; Song L; Xu J; Wang A; Bannerman P; Guo F
    J Neurosci; 2018 Feb; 38(7):1802-1820. PubMed ID: 29335358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum.
    Butt AM; Berry M
    J Neurosci Res; 2000 Feb; 59(4):477-88. PubMed ID: 10679786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myelin and oligodendrocyte development in the canine spinal cord.
    Mayer JA; Figari C; Radcliff AB; Mckee C; Duncan ID
    J Comp Neurol; 2016 Apr; 524(5):930-9. PubMed ID: 26338416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord.
    Zheng K; Li H; Zhu Y; Zhu Q; Qiu M
    J Neurosci; 2010 Jun; 30(24):8245-50. PubMed ID: 20554876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules.
    Varga ZM; Bandtlow CE; Erulkar SD; Schwab ME; Nicholls JG
    Eur J Neurosci; 1995 Oct; 7(10):2119-29. PubMed ID: 8542069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unwrapping myelination by microRNAs.
    He X; Yu Y; Awatramani R; Lu QR
    Neuroscientist; 2012 Feb; 18(1):45-55. PubMed ID: 21536841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons.
    Wood PM; Williams AK
    Brain Res; 1984 Feb; 314(2):225-41. PubMed ID: 6704750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lines of glial precursor cells immortalised with a temperature-sensitive oncogene give rise to astrocytes and oligodendrocytes following transplantation into demyelinated lesions in the central nervous system.
    Trotter J; Crang AJ; Schachner M; Blakemore WF
    Glia; 1993 Sep; 9(1):25-40. PubMed ID: 8244529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myelin-forming oligodendrocytes of developing mouse spinal cord: immunocytochemical and ultrastructural studies.
    Choi BH
    J Neuropathol Exp Neurol; 1986 Sep; 45(5):513-24. PubMed ID: 2427660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-mediated control of oligodendrocyte differentiation.
    Zhao X; He X; Han X; Yu Y; Ye F; Chen Y; Hoang T; Xu X; Mi QS; Xin M; Wang F; Appel B; Lu QR
    Neuron; 2010 Mar; 65(5):612-26. PubMed ID: 20223198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of drugs on oligodendrocyte proliferation and myelin regeneration.
    Herndon RM
    Prog Brain Res; 1987; 71():485-91. PubMed ID: 3035611
    [No Abstract]   [Full Text] [Related]  

  • 14. miRNAs are required for the terminal differentiation of white matter astrocytes in the developing CNS.
    Li X; Chen Y; Chi Q; Hu X; Xu X; Zhang Z; Qiu M; Zheng K
    Neuroscience; 2016 Jan; 312():99-107. PubMed ID: 26556063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes.
    Jovičić A; Roshan R; Moisoi N; Pradervand S; Moser R; Pillai B; Luthi-Carter R
    J Neurosci; 2013 Mar; 33(12):5127-37. PubMed ID: 23516279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord.
    Noll E; Miller RH
    Development; 1994 Mar; 120(3):649-60. PubMed ID: 8162861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors.
    Hirano M; Goldman JE
    J Neurosci Res; 1988; 21(2-4):155-67. PubMed ID: 3216418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity in central myelination: evidence for local regulation of myelin thickness.
    Waxman SG; Sims TJ
    Brain Res; 1984 Jan; 292(1):179-85. PubMed ID: 6697207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids.
    Jackman N; Ishii A; Bansal R
    Physiology (Bethesda); 2009 Oct; 24():290-7. PubMed ID: 19815855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequentially acting SOX proteins orchestrate astrocyte- and oligodendrocyte-specific gene expression.
    Klum S; Zaouter C; Alekseenko Z; Björklund ÅK; Hagey DW; Ericson J; Muhr J; Bergsland M
    EMBO Rep; 2018 Nov; 19(11):. PubMed ID: 30166336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.