These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21555788)

  • 1. Efficient cloning of alternatively polyadenylated transcripts via hybridization capture PCR.
    Rampias TN; Fragoulis EG; Sideris DC
    Curr Issues Mol Biol; 2012; 14(1):1-8. PubMed ID: 21555788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning full-length transcripts and transcript variants using 5' and 3' RACE.
    Freeman LA
    Methods Mol Biol; 2013; 1027():3-17. PubMed ID: 23912980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of transcript polyadenylation by 3' RACE: the response of epidermal growth factor messenger ribonucleic acid to thyroid hormone in the thyroid and submaxillary glands.
    Sheflin LG; Brooks EM; Spaulding SW
    Endocrinology; 1995 Dec; 136(12):5666-76. PubMed ID: 7588322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Amplification of Sequences from the 3' Ends of mRNAs: 3'-RACE.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2019 May; 2019(5):. PubMed ID: 31043557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA.
    Chenchik A; Diachenko L; Moqadam F; Tarabykin V; Lukyanov S; Siebert PD
    Biotechniques; 1996 Sep; 21(3):526-34. PubMed ID: 8879595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtractive hybridization strategy using paramagnetic oligo(dT) beads and PCR.
    Mészáros M; Morton DB
    Biotechniques; 1996 Mar; 20(3):413-9. PubMed ID: 8679200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of novel human transcript variants by analysis of intronic single-block EST with polyadenylation site.
    Wang P; Yu P; Gao P; Shi T; Ma D
    BMC Genomics; 2009 Nov; 10():518. PubMed ID: 19906316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning of large alternative transcripts based on comparative phylogenetic analysis and exploration of an EST database.
    Ji J; Wang R
    Anal Biochem; 2012 May; 424(2):140-1. PubMed ID: 22387390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide polyadenylation site mapping.
    Pelechano V; Wilkening S; Järvelin AI; Tekkedil MM; Steinmetz LM
    Methods Enzymol; 2012; 513():271-96. PubMed ID: 22929774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple transcription initiation sites, alternative splicing, and differential polyadenylation contribute to the complexity of human neurofibromatosis 2 transcripts.
    Chang LS; Akhmametyeva EM; Wu Y; Zhu L; Welling DB
    Genomics; 2002 Jan; 79(1):63-76. PubMed ID: 11827459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and sensitive analysis of mRNA polyadenylation states by PCR.
    Sallés FJ; Strickland S
    PCR Methods Appl; 1995 Jun; 4(6):317-21. PubMed ID: 7580923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple, directional cDNA cloning for in situ transcript hybridization screens.
    Tamme R; Mills K; Rainbird B; Nornes S; Lardelli M
    Biotechniques; 2001 Oct; 31(4):938-42, 944, 946. PubMed ID: 11680725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, cDNA sequence, and alternative splicing of porcine amelogenin mRNAs.
    Hu CC; Bartlett JD; Zhang CH; Qian Q; Ryu OH; Simmer JP
    J Dent Res; 1996 Oct; 75(10):1735-41. PubMed ID: 8955667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient targeted transcript discovery via array-based normalization of RACE libraries.
    Djebali S; Kapranov P; Foissac S; Lagarde J; Reymond A; Ucla C; Wyss C; Drenkow J; Dumais E; Murray RR; Lin C; Szeto D; Denoeud F; Calvo M; Frankish A; Harrow J; Makrythanasis P; Vidal M; Salehi-Ashtiani K; Antonarakis SE; Gingeras TR; Guigó R
    Nat Methods; 2008 Jul; 5(7):629-35. PubMed ID: 18500348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.
    Frohman MA; Dush MK; Martin GR
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8998-9002. PubMed ID: 2461560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of primary and subtracted cDNA libraries from early embryos.
    Rothstein JL; Johnson D; Jessee J; Skowronski J; DeLoia JA; Solter D; Knowles BB
    Methods Enzymol; 1993; 225():587-610. PubMed ID: 7694045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified cDNA subtraction to identify differentially expressed genes from plants with universal application to other eukaryotes.
    Mishra RN; Ramesha A; Kaul T; Nair S; Sopory SK; Reddy MK
    Anal Biochem; 2005 Oct; 345(1):149-57. PubMed ID: 16137632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSH adequacy to preimplantation mammalian development: scarce specific transcripts cloning despite irregular normalisation.
    Bui LC; Léandri RD; Renard JP; Duranthon V
    BMC Genomics; 2005 Nov; 6():155. PubMed ID: 16277657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cDNA screening by array hybridization.
    Drmanac R; Drmanac S
    Methods Enzymol; 1999; 303():165-78. PubMed ID: 10349645
    [No Abstract]   [Full Text] [Related]  

  • 20. Differentially expressed, abundant trans-spliced cDNAs from larval Brugia malayi.
    Gregory WF; Blaxter ML; Maizels RM
    Mol Biochem Parasitol; 1997 Jul; 87(1):85-95. PubMed ID: 9233676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.