BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 21555847)

  • 1. SSVEP-based Bremen-BCI interface--boosting information transfer rates.
    Volosyak I
    J Neural Eng; 2011 Jun; 8(3):036020. PubMed ID: 21555847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
    Volosyak I; Valbuena D; Lüth T; Malechka T; Gräser A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An online brain-computer interface using non-flashing visual evoked potentials.
    Liu T; Goldberg L; Gao S; Hong B
    J Neural Eng; 2010 Jun; 7(3):036003. PubMed ID: 20404396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method.
    Bin G; Gao X; Yan Z; Hong B; Gao S
    J Neural Eng; 2009 Aug; 6(4):046002. PubMed ID: 19494422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A BCI-based environmental controller for the motion-disabled.
    Gao X; Xu D; Cheng M; Gao S
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):137-40. PubMed ID: 12899256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface.
    Wilson JJ; Palaniappan R
    J Neural Eng; 2011 Apr; 8(2):025026. PubMed ID: 21436532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency and phase mixed coding in SSVEP-based brain--computer interface.
    Jia C; Gao X; Hong B; Gao S
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):200-6. PubMed ID: 20729160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An SSVEP-based BCI using high duty-cycle visual flicker.
    Lee PL; Yeh CL; Cheng JY; Yang CY; Lan GY
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3350-9. PubMed ID: 21788179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An asynchronous P300 BCI with SSVEP-based control state detection.
    Panicker RC; Puthusserypady S; Sun Y
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1781-8. PubMed ID: 21335304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis.
    Pan J; Gao X; Duan F; Yan Z; Gao S
    J Neural Eng; 2011 Jun; 8(3):036027. PubMed ID: 21566275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.
    Kimura Y; Tanaka T; Higashi H; Morikawa N
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.
    Müller-Putz GR; Scherer R; Brauneis C; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):123-30. PubMed ID: 16317236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.
    Kelly SP; Lalor EC; Reilly RB; Foxe JJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):172-8. PubMed ID: 16003896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.