BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 21556063)

  • 1. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography.
    Liu H; Nishide D; Tanaka T; Kataura H
    Nat Commun; 2011; 2():309. PubMed ID: 21556063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous chirality and enantiomer separation of metallic single-wall carbon nanotubes by gel column chromatography.
    Tanaka T; Urabe Y; Hirakawa T; Kataura H
    Anal Chem; 2015 Sep; 87(18):9467-72. PubMed ID: 26308487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography.
    Liu H; Tanaka T; Kataura H
    Nano Lett; 2014 Nov; 14(11):6237-43. PubMed ID: 25347592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pass separation of single-wall carbon nanotubes by gel chromatography with a gradient of surfactant concentration.
    Inori R; Okada T; Arie T; Akita S
    Nanotechnology; 2012 Jun; 23(23):235708. PubMed ID: 22610048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and separation of DNA-wrapped carbon nanotubes.
    Ao G; Zheng M
    Curr Protoc Chem Biol; 2015 Mar; 7(1):43-51. PubMed ID: 25727062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes.
    Zeng X; Hu J; Zhang X; Zhou N; Zhou W; Liu H; Xie S
    Nanoscale; 2015 Oct; 7(39):16273-81. PubMed ID: 26376611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography.
    Liu H; Tanaka T; Urabe Y; Kataura H
    Nano Lett; 2013 May; 13(5):1996-2003. PubMed ID: 23573837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography.
    Flavel BS; Kappes MM; Krupke R; Hennrich F
    ACS Nano; 2013 Apr; 7(4):3557-64. PubMed ID: 23540203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system.
    Yang D; Li L; Wei X; Wang Y; Zhou W; Kataura H; Xie S; Liu H
    Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33597241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique toxicological behavior from single-wall carbon nanotubes separated via selective adsorption on hydrogels.
    Clar JG; Gustitus SA; Youn S; Silvera Batista CA; Ziegler KJ; Bonzongo JC
    Environ Sci Technol; 2015 Mar; 49(6):3913-21. PubMed ID: 25710331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic determination of the metal/semiconductor separation of carbon nanotubes using hydrogels.
    Hirano A; Tanaka T; Kataura H
    ACS Nano; 2012 Nov; 6(11):10195-205. PubMed ID: 23088755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.
    He P; Meany B; Wang C; Piao Y; Kwon H; Deng S; Wang Y
    Electrophoresis; 2017 Jul; 38(13-14):1669-1677. PubMed ID: 28370070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optoelectronic properties of single-wall carbon nanotubes.
    Nanot S; Hároz EH; Kim JH; Hauge RH; Kono J
    Adv Mater; 2012 Sep; 24(36):4977-94. PubMed ID: 22911973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules.
    Haggenmueller R; Rahatekar SS; Fagan JA; Chun J; Becker ML; Naik RR; Krauss T; Carlson L; Kadla JF; Trulove PC; Fox DF; Delong HC; Fang Z; Kelley SO; Gilman JW
    Langmuir; 2008 May; 24(9):5070-8. PubMed ID: 18442227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes.
    Kharlamova MV; Burdanova MG; Paukov MI; Kramberger C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration.
    Kapralov AA; Feng WH; Amoscato AA; Yanamala N; Balasubramanian K; Winnica DE; Kisin ER; Kotchey GP; Gou P; Sparvero LJ; Ray P; Mallampalli RK; Klein-Seetharaman J; Fadeel B; Star A; Shvedova AA; Kagan VE
    ACS Nano; 2012 May; 6(5):4147-56. PubMed ID: 22463369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Length-Dependent Enantioselectivity of Carbon Nanotubes by Gel Chromatography.
    Wei X; Luo X; Li S; Zhou W; Xie S; Liu H
    ACS Nano; 2023 May; 17(9):8393-8402. PubMed ID: 37092905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes.
    Safaee MM; Gravely M; Rocchio C; Simmeth M; Roxbury D
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2225-2233. PubMed ID: 30575397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.
    Liu B; Wu F; Gui H; Zheng M; Zhou C
    ACS Nano; 2017 Jan; 11(1):31-53. PubMed ID: 28072518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.
    Samarajeewa DR; Dieckmann GR; Nielsen SO; Musselman IH
    Nanoscale; 2012 Aug; 4(15):4544-54. PubMed ID: 22699559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.