BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21556346)

  • 1. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery.
    Liu Y; Wang T; He F; Liu Q; Zhang D; Xiang S; Su S; Zhang J
    Int J Nanomedicine; 2011; 6():721-7. PubMed ID: 21556346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery.
    Zhou C; Yu B; Yang X; Huo T; Lee LJ; Barth RF; Lee RJ
    Int J Pharm; 2010 Jun; 392(1-2):201-8. PubMed ID: 20214964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.
    Khan MA; Wu VM; Ghosh S; Uskoković V
    J Colloid Interface Sci; 2016 Jun; 471():48-58. PubMed ID: 26971068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protamine sulfate-calcium carbonate-plasmid DNA ternary nanoparticles for efficient gene delivery.
    Wang CQ; Wu JL; Zhuo RX; Cheng SX
    Mol Biosyst; 2014 Mar; 10(3):672-8. PubMed ID: 24442276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency.
    Cao X; Deng W; Wei Y; Su W; Yang Y; Wei Y; Yu J; Xu X
    Int J Nanomedicine; 2011; 6():3335-49. PubMed ID: 22229000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency.
    Tang J; Chen JY; Liu J; Luo M; Wang YJ; Wei XW; Gao X; Wang BL; Liu YB; Yi T; Tong AP; Song XR; Xie YM; Zhao Y; Xiang M; Huang Y; Zheng Y
    Int J Pharm; 2012 Jul; 431(1-2):210-21. PubMed ID: 22561795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles.
    Sokolova VV; Radtke I; Heumann R; Epple M
    Biomaterials; 2006 Jun; 27(16):3147-53. PubMed ID: 16469375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene transfection of human mesenchymal stem cells with a nano-hydroxyapatite-collagen scaffold containing DNA-functionalized calcium phosphate nanoparticles.
    Tenkumo T; Vanegas Sáenz JR; Takada Y; Takahashi M; Rotan O; Sokolova V; Epple M; Sasaki K
    Genes Cells; 2016 Jul; 21(7):682-95. PubMed ID: 27238217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium phosphate-mediated gene delivery using simulated body fluid (SBF).
    Nouri A; Castro R; Santos JL; Fernandes C; Rodrigues J; Tomás H
    Int J Pharm; 2012 Sep; 434(1-2):199-208. PubMed ID: 22664458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles.
    Hu J; Kovtun A; Tomaszewski A; Singer BB; Seitz B; Epple M; Steuhl KP; Ergün S; Fuchsluger TA
    Acta Biomater; 2012 Mar; 8(3):1156-63. PubMed ID: 21982848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles - Efficient calcium phosphate based non-viral gene delivery systems.
    Shekhar S; Roy A; Hong D; Kumta PN
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():486-95. PubMed ID: 27612739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calcium phosphate-based gene delivery system.
    Fu H; Hu Y; McNelis T; Hollinger JO
    J Biomed Mater Res A; 2005 Jul; 74(1):40-8. PubMed ID: 15920737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of nanostructured calcium carbonate for efficient gene delivery.
    Zhao D; Wang CQ; Zhuo RX; Cheng SX
    Colloids Surf B Biointerfaces; 2014 Jun; 118():111-6. PubMed ID: 24732398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. F127/Calcium phosphate hybrid nanoparticles: a promising vector for improving siRNA delivery and gene silencing.
    Qin L; Sun Y; Liu P; Wang Q; Han B; Duan Y
    J Biomater Sci Polym Ed; 2013; 24(15):1757-66. PubMed ID: 23746331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ternary nanoparticles composed of cationic solid lipid nanoparticles, protamine, and DNA for gene delivery.
    He SN; Li YL; Yan JJ; Zhang W; Du YZ; Yu HY; Hu FQ; Yuan H
    Int J Nanomedicine; 2013; 8():2859-69. PubMed ID: 23990715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection.
    Pedraza CE; Bassett DC; McKee MD; Nelea V; Gbureck U; Barralet JE
    Biomaterials; 2008 Aug; 29(23):3384-92. PubMed ID: 18485472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway.
    Delgado D; del Pozo-Rodríguez A; Solinís MÁ; Rodríguez-Gascón A
    Eur J Pharm Biopharm; 2011 Nov; 79(3):495-502. PubMed ID: 21726641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium phosphate/octadecyl-quatemized carboxymethyl chitosan nanoparticles: an efficient and promising carrier for gene transfection.
    Sun Y; Li X; Liang X; Wan Z; Duan Y
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5260-6. PubMed ID: 23882752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual delivery of nucleic acids and PEGylated-bisphosphonates via calcium phosphate nanoparticles.
    Bisso S; Mura S; Castagner B; Couvreur P; Leroux JC
    Eur J Pharm Biopharm; 2019 Sep; 142():142-152. PubMed ID: 31220571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Calcium Phosphate/pDNA Nanoparticles for Exogenous Gene Delivery by Co-Precipitation Method: Optimization of Formulation Variables Using Box-Behnken Design.
    Li W; Zhang X; Jing S; Xin X; Chen K; Chen D; Hu H
    J Pharm Sci; 2017 Aug; 106(8):2053-2059. PubMed ID: 28483423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.