These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 21556410)
1. Testing the use of molecular dynamics to simulate fluorophore motions and FRET. Deplazes E; Jayatilaka D; Corry B Phys Chem Chem Phys; 2011 Jun; 13(23):11045-54. PubMed ID: 21556410 [TBL] [Abstract][Full Text] [Related]
2. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer. Badali D; Gradinaru CC J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537 [TBL] [Abstract][Full Text] [Related]
3. Development of a robust model system of FRET using base surrogates tethering fluorophores for strict control of their position and orientation within DNA duplex. Kato T; Kashida H; Kishida H; Yada H; Okamoto H; Asanuma H J Am Chem Soc; 2013 Jan; 135(2):741-50. PubMed ID: 23240980 [TBL] [Abstract][Full Text] [Related]
4. Multi-fluorophore fluorescence resonance energy transfer for probing nucleic acids structure and folding. Liu J; Lu Y Methods Mol Biol; 2006; 335():257-71. PubMed ID: 16785633 [TBL] [Abstract][Full Text] [Related]
5. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET. Ranjit S; Gurunathan K; Levitus M J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039 [TBL] [Abstract][Full Text] [Related]
6. Strength in numbers: effects of acceptor abundance on FRET efficiency. Fábián ÁI; Rente T; Szöllosi J; Mátyus L; Jenei A Chemphyschem; 2010 Dec; 11(17):3713-21. PubMed ID: 20936620 [TBL] [Abstract][Full Text] [Related]
7. Contribution of fluorophore dynamics and solvation to resonant energy transfer in protein-DNA complexes: a molecular-dynamics study. Shoura MJ; Ranatunga RJKU; Harris SA; Nielsen SO; Levene SD Biophys J; 2014 Aug; 107(3):700-710. PubMed ID: 25099809 [TBL] [Abstract][Full Text] [Related]
8. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253 [TBL] [Abstract][Full Text] [Related]
9. Computer simulation to investigate the FRET application in DNA hybridization systems. Liao JM; Wang YT; Chen CL Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495 [TBL] [Abstract][Full Text] [Related]
10. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins. Walczewska-Szewc K; Deplazes E; Corry B J Chem Theory Comput; 2015 Jul; 11(7):3455-65. PubMed ID: 26575779 [TBL] [Abstract][Full Text] [Related]
11. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology. Kukolka F; Müller BK; Paternoster S; Arndt A; Niemeyer CM; Bräuchle C; Lamb DC Small; 2006 Aug; 2(8-9):1083-9. PubMed ID: 17193172 [TBL] [Abstract][Full Text] [Related]
12. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR; Medintz IL; Mattoussi H Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019 [TBL] [Abstract][Full Text] [Related]
13. Two-step FRET as a structural tool. Watrob HM; Pan CP; Barkley MD J Am Chem Soc; 2003 Jun; 125(24):7336-43. PubMed ID: 12797808 [TBL] [Abstract][Full Text] [Related]
14. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores. Hevekerl H; Spielmann T; Chmyrov A; Widengren J J Phys Chem B; 2011 Nov; 115(45):13360-70. PubMed ID: 21928769 [TBL] [Abstract][Full Text] [Related]
15. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions. Alexandrov Y; Nikolic DS; Dunsby C; French PMW J Biophotonics; 2018 Jul; 11(7):e201700366. PubMed ID: 29582566 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Wang L; Gaigalas AK; Blasic J; Holden MJ; Gallagher DT; Pires R Biopolymers; 2003; 72(6):401-12. PubMed ID: 14587062 [TBL] [Abstract][Full Text] [Related]
17. Gauging the flexibility of fluorescent markers for the interpretation of fluorescence resonance energy transfer. Rindermann JJ; Akhtman Y; Richardson J; Brown T; Lagoudakis PG J Am Chem Soc; 2011 Jan; 133(2):279-85. PubMed ID: 21155557 [TBL] [Abstract][Full Text] [Related]
18. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. Peulen TO; Opanasyuk O; Seidel CAM J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377 [TBL] [Abstract][Full Text] [Related]
19. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
20. General and reliable quantitative measurement of fluorescence resonance energy transfer using three fluorescence channels. Xie F; Zhu J; Deng C; Huang G; Mitchelson K; Cheng J Analyst; 2012 Feb; 137(4):1013-9. PubMed ID: 22234659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]