These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21556440)

  • 1. Impurities within carbon nanotubes govern the electrochemical oxidation of substituted hydrazines.
    Stuart EJ; Pumera M
    Phys Chem Chem Phys; 2011 Jun; 13(22):10818-22. PubMed ID: 21556440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The significant role of carboxylated carbonaceous fragments in the electrochemistry of carbon nanotubes.
    Ma X; Jia L; Zhang L; Zhu L
    Chemistry; 2014 Apr; 20(14):4072-6. PubMed ID: 24616146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanographite impurities in carbon nanotubes: their influence on the oxidation of insulin, nitric oxide, and extracellular thiols.
    Chng EL; Pumera M
    Chemistry; 2012 Jan; 18(5):1401-7. PubMed ID: 22213085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties?
    Pumera M; Miyahara Y
    Nanoscale; 2009 Nov; 1(2):260-5. PubMed ID: 20644847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct determination of bioavailable molybdenum in carbon nanotubes.
    Giovanni M; Ambrosi A; Pumera M
    Chemistry; 2011 Feb; 17(6):1806-10. PubMed ID: 21274931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-active nickel in carbon nanotubes and its direct determination.
    Ambrosi A; Pumera M
    Chemistry; 2012 Mar; 18(11):3338-44. PubMed ID: 22307929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes.
    Ambrosi A; Pumera M
    Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes.
    Pumera M; Iwai H
    Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of carbon nanotubes by high temperature chlorine gas treatment.
    Chng EL; Poh HL; Sofer Z; Pumera M
    Phys Chem Chem Phys; 2013 Apr; 15(15):5615-9. PubMed ID: 23471202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry at carbon nanotubes: perspective and issues.
    Dumitrescu I; Unwin PR; Macpherson JV
    Chem Commun (Camb); 2009 Dec; (45):6886-901. PubMed ID: 19904345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy.
    Ge C; Lao F; Li W; Li Y; Chen C; Qiu Y; Mao X; Li B; Chai Z; Zhao Y
    Anal Chem; 2008 Dec; 80(24):9426-34. PubMed ID: 18998708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains.
    Crevillen AG; Pumera M; Gonzalez MC; Escarpa A
    Analyst; 2009 Apr; 134(4):657-62. PubMed ID: 19305913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes.
    Liu Q; Lu X; Li J; Yao X; Li J
    Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrochemistry of carbon nanotubes: fundamentals and applications.
    Pumera M
    Chemistry; 2009; 15(20):4970-8. PubMed ID: 19360829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein.
    Xiao C; Chu X; Wu B; Pang H; Zhang X; Chen J
    Talanta; 2010 Mar; 80(5):1719-24. PubMed ID: 20152402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes.
    Kolodiazhnyi T; Pumera M
    Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transducers and enzyme cofactors are susceptible to oxidation by nanographite impurities in carbon nanotube materials.
    J E Stuart E; Pumera M
    Chemistry; 2011 May; 17(20):5544-8. PubMed ID: 21491519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication.
    Toh RJ; Ambrosi A; Pumera M
    Chemistry; 2012 Sep; 18(37):11593-6. PubMed ID: 22865345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine.
    Han KN; Li CA; Bui MP; Pham XH; Seong GH
    Chem Commun (Camb); 2011 Jan; 47(3):938-40. PubMed ID: 21076760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.