BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21556443)

  • 1. ZnO hierarchical structures for efficient quasi-solid dye-sensitized solar cells.
    Cheng C; Shi Y; Zhu C; Li W; Wang L; Fung KK; Wang N
    Phys Chem Chem Phys; 2011 Jun; 13(22):10631-4. PubMed ID: 21556443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements.
    Shi Y; Zhu C; Wang L; Li W; Fung KK; Wang N
    Chemistry; 2013 Jan; 19(1):282-7. PubMed ID: 23197439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dye-sensitized solar cells based on WO3.
    Zheng H; Tachibana Y; Kalantar-Zadeh K
    Langmuir; 2010 Dec; 26(24):19148-52. PubMed ID: 21077615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically structured ZnO nanorods as an efficient photoanode for dye-sensitized solar cells.
    Peng W; Han L; Wang Z
    Chemistry; 2014 Jul; 20(27):8483-7. PubMed ID: 24889388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and efficient method using polymer dispersion to prepare controllable nanoporous TiO2 anodes for dye-sensitized solar cells.
    Li J; Wang L; Kong X; Ma B; Shi Y; Zhan C; Qiu Y
    Langmuir; 2009 Sep; 25(18):11162-7. PubMed ID: 19572517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly efficient light capturing 2D (nanosheet)-1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells.
    Kim H; Yong K
    Phys Chem Chem Phys; 2013 Feb; 15(6):2109-16. PubMed ID: 23288043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells.
    Qiu J; Guo M; Wang X
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2358-67. PubMed ID: 21675757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanowire dye-sensitized solar cells.
    Law M; Greene LE; Johnson JC; Saykally R; Yang P
    Nat Mater; 2005 Jun; 4(6):455-9. PubMed ID: 15895100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells.
    He CX; Lei BX; Wang YF; Su CY; Fang YP; Kuang DB
    Chemistry; 2010 Aug; 16(29):8757-61. PubMed ID: 20572173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanorod-nanosheet hierarchically structured ZnO crystals on zinc foil as flexible photoanodes for dye-sensitized solar cells.
    Gao R; Tian J; Liang Z; Zhang Q; Wang L; Cao G
    Nanoscale; 2013 Mar; 5(5):1894-901. PubMed ID: 23353672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer assembly of nanowire arrays for dye-sensitized solar cells.
    Xu C; Wu J; Desai UV; Gao D
    J Am Chem Soc; 2011 Jun; 133(21):8122-5. PubMed ID: 21526854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical weeping willow nano-tree growth and effect of branching on dye-sensitized solar cell efficiency.
    Herman I; Yeo J; Hong S; Lee D; Nam KH; Choi JH; Hong WH; Lee D; Grigoropoulos CP; Ko SH
    Nanotechnology; 2012 May; 23(19):194005. PubMed ID: 22538967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells.
    Guérin VM; Elias J; Nguyen TT; Philippe L; Pauporté T
    Phys Chem Chem Phys; 2012 Oct; 14(37):12948-55. PubMed ID: 22903457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsphere assembly of TiO2 mesoporous nanosheets with highly exposed (101) facets and application in a light-trapping quasi-solid-state dye-sensitized solar cell.
    Tao X; Ruan P; Zhang X; Sun H; Zhou X
    Nanoscale; 2015 Feb; 7(8):3539-47. PubMed ID: 25631573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells.
    Bi D; Boschloo G; Schwarzmüller S; Yang L; Johansson EM; Hagfeldt A
    Nanoscale; 2013 Dec; 5(23):11686-91. PubMed ID: 24100947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells.
    Gao R; Wang L; Ma B; Zhan C; Qiu Y
    Langmuir; 2010 Feb; 26(4):2460-5. PubMed ID: 19856906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells.
    Poudel P; Qiao Q
    Nanoscale; 2012 Apr; 4(9):2826-38. PubMed ID: 22447033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles.
    Ranga Rao A; Dutta V
    Nanotechnology; 2008 Nov; 19(44):445712. PubMed ID: 21832754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.