These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 21556815)
1. Influence of moderate hypoxia on tolerance to high-intensity exercise. Dekerle J; Mucci P; Carter H Eur J Appl Physiol; 2012 Jan; 112(1):327-35. PubMed ID: 21556815 [TBL] [Abstract][Full Text] [Related]
2. Determinants of curvature constant (W') of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. Deb SK; Gough LA; Sparks SA; McNaughton LR Eur J Appl Physiol; 2017 May; 117(5):901-912. PubMed ID: 28280973 [TBL] [Abstract][Full Text] [Related]
3. Influence of hypoxia on the power-duration relationship during high-intensity exercise. Simpson LP; Jones AM; Skiba PF; Vanhatalo A; Wilkerson D Int J Sports Med; 2015 Feb; 36(2):113-9. PubMed ID: 25329429 [TBL] [Abstract][Full Text] [Related]
4. Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity. La Monica MB; Fukuda DH; Starling-Smith TM; Wang R; Hoffman JR; Stout JR Respir Physiol Neurobiol; 2018 Feb; 249():1-6. PubMed ID: 29247712 [TBL] [Abstract][Full Text] [Related]
5. Short-term interval training at both lower and higher intensities in the severe exercise domain result in improvements in V̇O₂ on-kinetics. Turnes T; de Aguiar RA; de Oliveira Cruz RS; Lisbôa FD; Pereira KL; Caputo F Eur J Appl Physiol; 2016 Oct; 116(10):1975-84. PubMed ID: 27491618 [TBL] [Abstract][Full Text] [Related]
6. Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance. Ferguson C; Whipp BJ; Cathcart AJ; Rossiter HB; Turner AP; Ward SA J Appl Physiol (1985); 2007 Sep; 103(3):812-22. PubMed ID: 17540836 [TBL] [Abstract][Full Text] [Related]
7. The y-intercept of the critical power function as a measure of anaerobic work capacity. Jenkins DG; Quigley BM Ergonomics; 1991 Jan; 34(1):13-22. PubMed ID: 2009846 [TBL] [Abstract][Full Text] [Related]
8. Minimal Effects of Moderate Normobaric Hypoxia on the Upper Body Work-Time Relationship in Recreationally Active Women. Starling-Smith TM; La Monica MB; Stout JR; Fukuda DH High Alt Med Biol; 2020 Mar; 21(1):62-69. PubMed ID: 31928420 [No Abstract] [Full Text] [Related]
9. Effects of recovery interval duration on the parameters of the critical power model for incremental exercise. Vinetti G; Fagoni N; Taboni A; Camelio S; di Prampero PE; Ferretti G Eur J Appl Physiol; 2017 Sep; 117(9):1859-1867. PubMed ID: 28687955 [TBL] [Abstract][Full Text] [Related]
10. Validity of the two-parameter model in estimating the anaerobic work capacity. Dekerle J; Brickley G; Hammond AJ; Pringle JS; Carter H Eur J Appl Physiol; 2006 Feb; 96(3):257-64. PubMed ID: 16261386 [TBL] [Abstract][Full Text] [Related]
11. Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. Friedmann B; Frese F; Menold E; Bärtsch P Eur J Appl Physiol; 2007 Sep; 101(1):67-73. PubMed ID: 17486360 [TBL] [Abstract][Full Text] [Related]
12. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant. Dekerle J; de Souza KM; de Lucas RD; Guglielmo LG; Greco CC; Denadai BS PLoS One; 2015; 10(9):e0138428. PubMed ID: 26407169 [TBL] [Abstract][Full Text] [Related]
13. Effects of step duration in incremental ramp protocols on peak power and maximal oxygen consumption. Adami A; Sivieri A; Moia C; Perini R; Ferretti G Eur J Appl Physiol; 2013 Oct; 113(10):2647-53. PubMed ID: 23949790 [TBL] [Abstract][Full Text] [Related]
14. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities. Schäfer LU; Hayes M; Dekerle J Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691 [TBL] [Abstract][Full Text] [Related]
15. Contributions of Body-Composition Characteristics to Critical Power and Anaerobic Work Capacity. Byrd MT; Switalla JR; Eastman JE; Wallace BJ; Clasey JL; Bergstrom HC Int J Sports Physiol Perform; 2018 Feb; 13(2):189-193. PubMed ID: 28530517 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling. Townsend NE; Nichols DS; Skiba PF; Racinais S; Périard JD Front Physiol; 2017; 8():180. PubMed ID: 28386237 [No Abstract] [Full Text] [Related]
17. A new single work bout test to estimate critical power and anaerobic work capacity. Bergstrom HC; Housh TJ; Zuniga JM; Camic CL; Traylor DA; Schmidt RJ; Johnson GO J Strength Cond Res; 2012 Mar; 26(3):656-63. PubMed ID: 22310519 [TBL] [Abstract][Full Text] [Related]
18. The effect of prior heavy exercise on the parameters of the power-duration curve for cycle ergometry. Miura A; Shiragiku C; Hirotoshi Y; Kitano A; Endo MY; Barstow TJ; Morton RH; Fukuba Y Appl Physiol Nutr Metab; 2009 Dec; 34(6):1001-7. PubMed ID: 20029507 [TBL] [Abstract][Full Text] [Related]
19. Oxygen uptake during submaximal incremental and constant work load exercises in hypoxia. Benoit H; Busso T; Prieur F; Castells J; Freyssenet D; Lacour JR; Denis C; Geyssant A Int J Sports Med; 1997 Feb; 18(2):101-5. PubMed ID: 9081265 [TBL] [Abstract][Full Text] [Related]
20. Effects of priming exercise on VO2 kinetics and the power-duration relationship. Burnley M; Davison G; Baker JR Med Sci Sports Exerc; 2011 Nov; 43(11):2171-9. PubMed ID: 21552161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]