These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21556947)

  • 1. Rapid microfluidic perfusion enabling kinetic studies of lipid ion channels in a bilayer lipid membrane chip.
    Shao C; Sun B; Colombini M; Devoe DL
    Ann Biomed Eng; 2011 Aug; 39(8):2242-51. PubMed ID: 21556947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of membrane lipids on ion channel structure and function.
    Tillman TS; Cascio M
    Cell Biochem Biophys; 2003; 38(2):161-90. PubMed ID: 12777713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.
    Suzuki H; Le Pioufle B; Takeuchi S
    Biomed Microdevices; 2009 Feb; 11(1):17-22. PubMed ID: 18584329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP; Nablo BJ; Kasianowicz JJ; Gaitan MA; DeVoe DL
    Lab Chip; 2008 Apr; 8(4):602-8. PubMed ID: 18369516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-optical BLM chips enabling dynamic imaging of ordered lipid domains.
    Shao C; Kendall EL; DeVoe DL
    Lab Chip; 2012 Sep; 12(17):3142-9. PubMed ID: 22728885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated lipid bilayer and ion channel measurement platform.
    Thapliyal T; Poulos JL; Schmidt JJ
    Biosens Bioelectron; 2011 Jan; 26(5):2651-4. PubMed ID: 20197233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro- and nano-technologies for lipid bilayer-based ion-channel functional assays.
    Hirano-Iwata A; Ishinari Y; Yamamoto H; Niwano M
    Chem Asian J; 2015 Jun; 10(6):1266-74. PubMed ID: 25702941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay.
    Oiki S; Iwamoto M
    Biol Pharm Bull; 2018; 41(3):303-311. PubMed ID: 29491206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing the growth and dynamics of liquid-ordered domains during lipid bilayer folding in a microfluidic chip.
    Kendall EL; Shao C; DeVoe DL
    Small; 2012 Dec; 8(23):3613-9. PubMed ID: 22888063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ceramide and other simple sphingolipids on membrane lateral structure.
    Goñi FM; Alonso A
    Biochim Biophys Acta; 2009 Jan; 1788(1):169-77. PubMed ID: 18848519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramide channels: destabilization by Bcl-xL and role in apoptosis.
    Chang KT; Anishkin A; Patwardhan GA; Beverly LJ; Siskind LJ; Colombini M
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2374-84. PubMed ID: 26215742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of channel function due to physical energetic coupling with a lipid bilayer.
    Ashrafuzzaman M; Tseng CY; Tuszynski JA
    Biochem Biophys Res Commun; 2014 Mar; 445(2):463-8. PubMed ID: 24530910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous and Rapid Solution Exchange in a Lipid Bilayer Perfusion System Based on Droplet-Interface Bilayer.
    Lee EH
    Methods Mol Biol; 2021; 2186():197-211. PubMed ID: 32918739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis.
    Funakoshi K; Suzuki H; Takeuchi S
    Anal Chem; 2006 Dec; 78(24):8169-74. PubMed ID: 17165804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid bilayer arrays: cyclically formed and measured.
    Lu B; Kocharyan G; Schmidt JJ
    Biotechnol J; 2014 Mar; 9(3):446-51. PubMed ID: 24730059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of ion channels in agarose-supported silicon orifices.
    Maurer JA; White VE; Dougherty DA; Nadeau JL
    Biosens Bioelectron; 2007 May; 22(11):2577-84. PubMed ID: 17098413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.