BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

771 related articles for article (PubMed ID: 21557589)

  • 1. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2011 Jun; 115(22):5547-59. PubMed ID: 21557589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical/π-bond addition between o-benzyne and cyclic C5 hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2012 Feb; 116(4):1183-90. PubMed ID: 22214520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.
    da Silva G; Bozzelli JW
    Phys Chem Chem Phys; 2012 Dec; 14(46):16143-54. PubMed ID: 23108328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions between aromatic hydrocarbons and heterocycles: covalent and proton-bound dimer cations of benzene/pyridine.
    El-Shall MS; Ibrahim YM; Alsharaeh EH; Meot-Ner Mautner M; Watson SP
    J Am Chem Soc; 2009 Jul; 131(29):10066-76. PubMed ID: 19621961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio G3-type/statistical theory study of the formation of indene in combustion flames. I. Pathways involving benzene and phenyl radical.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 May; 111(19):3922-31. PubMed ID: 17260977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically activated reactions on the C7H5 energy surface: propargyl + diacetylene, i-C5H3 + acetylene, and n-C5H3 + acetylene.
    da Silva G; Trevitt AJ
    Phys Chem Chem Phys; 2011 May; 13(19):8940-52. PubMed ID: 21465038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAH formation under single collision conditions: reaction of phenyl radical and 1,3-butadiene to form 1,4-dihydronaphthalene.
    Kaiser RI; Parker DS; Zhang F; Landera A; Kislov VV; Mebel AM
    J Phys Chem A; 2012 May; 116(17):4248-58. PubMed ID: 22497458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of o-benzyne with propargyl and benzyl radicals: potential sources of polycyclic aromatic hydrocarbons in combustion.
    Matsugi A; Miyoshi A
    Phys Chem Chem Phys; 2012 Jul; 14(27):9722-8. PubMed ID: 22678346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycyclic Aromatic Hydrocarbon Growth by Diradical Cycloaddition/Fragmentation.
    Comandini A; Abid S; Chaumeix N
    J Phys Chem A; 2017 Aug; 121(31):5921-5931. PubMed ID: 28704998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A crossed molecular beams and ab initio study on the formation of C6H3 radicals. an interface between resonantly stabilized and aromatic radicals.
    Kaiser RI; Goswami M; Maksyutenko P; Zhang F; Kim YS; Landera A; Mebel AM
    J Phys Chem A; 2011 Sep; 115(37):10251-8. PubMed ID: 21823627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5.
    Georgievskii Y; Miller JA; Klippenstein SJ
    Phys Chem Chem Phys; 2007 Aug; 9(31):4259-68. PubMed ID: 17687474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unprecedented π···π interaction between an aromatic ring and a pseudo-aromatic ring formed through intramolecular H-bonding in a bidentate Schiff base ligand: crystal structure and DFT calculations.
    Dutta A; Jana AD; Gangopadhyay S; Das KK; Marek J; Marek R; Brus J; Ali M
    Phys Chem Chem Phys; 2011 Sep; 13(35):15845-53. PubMed ID: 21818495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring.
    Kislov VV; Sadovnikov AI; Mebel AM
    J Phys Chem A; 2013 Jun; 117(23):4794-816. PubMed ID: 23672431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction dynamics of phenyl radicals in extreme environments: a crossed molecular beam study.
    Gu X; Kaiser RI
    Acc Chem Res; 2009 Feb; 42(2):290-302. PubMed ID: 19053235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.
    Comandini A; Malewicki T; Brezinsky K
    J Phys Chem A; 2012 Mar; 116(10):2409-34. PubMed ID: 22339468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: an ab initio/RRKM study of 9-H-fulvalenyl (C5H5-C5H4) radical rearrangements.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 Sep; 111(38):9532-43. PubMed ID: 17711267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromaticity changes along the lowest-triplet-state path for C=C bond rotation of annulenyl-substituted olefins probed by the electron localization function.
    Villaume S; Ottosson H
    J Phys Chem A; 2009 Nov; 113(44):12304-10. PubMed ID: 19799456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiorbital interactions during Acyl radical addition reactions involving imines and electron-rich olefins.
    Kyne SH; Schiesser CH; Matsubara H
    J Org Chem; 2008 Jan; 73(2):427-34. PubMed ID: 18088139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.