These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 21558252)
1. Photophysiology in two major southern ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels. Arrigo KR; Mills MM; Kropuenske LR; van Dijken GL; Alderkamp AC; Robinson DH Integr Comp Biol; 2010 Dec; 50(6):950-66. PubMed ID: 21558252 [TBL] [Abstract][Full Text] [Related]
2. THE EFFECT OF IRON LIMITATION ON THE PHOTOPHYSIOLOGY OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER DYNAMIC IRRADIANCE(1). Alderkamp AC; Kulk G; Buma AG; Visser RJ; Van Dijken GL; Mills MM; Arrigo KR J Phycol; 2012 Feb; 48(1):45-59. PubMed ID: 27009649 [TBL] [Abstract][Full Text] [Related]
3. Dark metabolism: a molecular insight into how the Antarctic sea-ice diatom Fragilariopsis cylindrus survives long-term darkness. Kennedy F; Martin A; Bowman JP; Wilson R; McMinn A New Phytol; 2019 Jul; 223(2):675-691. PubMed ID: 30985935 [TBL] [Abstract][Full Text] [Related]
4. Insights into the Production and Role of Nitric Oxide in the Antarctic Sea-ice Diatom Fragilariopsis cylindrus. Kennedy F; Martin A; McMinn A J Phycol; 2020 Oct; 56(5):1196-1207. PubMed ID: 32428973 [TBL] [Abstract][Full Text] [Related]
5. Phytoplankton growth rates in the Amundsen Sea (Antarctica) during summer: The role of light. Lee Y; Jung J; Kim TW; Yang EJ; Park J Environ Res; 2022 May; 207():112165. PubMed ID: 34619128 [TBL] [Abstract][Full Text] [Related]
6. Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica. Trimborn S; Thoms S; Brenneis T; Heiden JP; Beszteri S; Bischof K Physiol Plant; 2017 Jun; 160(2):155-170. PubMed ID: 28019019 [TBL] [Abstract][Full Text] [Related]
7. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. DiTullio GR; Grebmeier JM; Arrigo KR; Lizotte MP; Robinson DH; Leventer A; Barry JP; VanWoert ML; Dunbar RB Nature; 2000 Apr; 404(6778):595-8. PubMed ID: 10766240 [TBL] [Abstract][Full Text] [Related]
8. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. Aslam SN; Strauss J; Thomas DN; Mock T; Underwood GJC ISME J; 2018 May; 12(5):1237-1251. PubMed ID: 29348581 [TBL] [Abstract][Full Text] [Related]
9. Phytoplankton Blooms Below the Antarctic Landfast Ice During the Melt Season Between Late Spring and Early Summer. Saggiomo M; Escalera L; Saggiomo V; Bolinesi F; Mangoni O J Phycol; 2021 Apr; 57(2):541-550. PubMed ID: 33283272 [TBL] [Abstract][Full Text] [Related]
10. Ice Melting Can Change DMSP Production and Photosynthetic Activity of the Haptophyte Phaeocystis antarctica Kameyama S; Otomaru M; McMinn A; Suzuki K J Phycol; 2020 Jun; 56(3):761-774. PubMed ID: 32141081 [TBL] [Abstract][Full Text] [Related]
11. Size scaling of photophysiology and growth in four freshly isolated diatom species from Ryder Bay, western Antarctic peninsula. Kulk G; Buist A; van de Poll WH; Rozema PD; Buma AGJ J Phycol; 2019 Apr; 55(2):314-328. PubMed ID: 30449029 [TBL] [Abstract][Full Text] [Related]
12. PHYTOPLANKTON SELENIUM REQUIREMENTS: THE CASE FOR SPECIES ISOLATED FROM TEMPERATE AND POLAR REGIONS OF THE SOUTHERN HEMISPHERE(1). Wake BD; Hassler CS; Bowie AR; Haddad PR; Butler EC J Phycol; 2012 Jun; 48(3):585-94. PubMed ID: 27011074 [TBL] [Abstract][Full Text] [Related]
13. Phytoplankton blooms during austral summer in the Ross Sea, Antarctica: Driving factors and trophic implications. Mangoni O; Saggiomo V; Bolinesi F; Margiotta F; Budillon G; Cotroneo Y; Misic C; Rivaro P; Saggiomo M PLoS One; 2017; 12(4):e0176033. PubMed ID: 28430813 [TBL] [Abstract][Full Text] [Related]
14. Phaeocystis antarctica unusual summer bloom in stratified antarctic coastal waters (Terra Nova Bay, Ross Sea). Mangoni O; Saggiomo M; Bolinesi F; Castellano M; Povero P; Saggiomo V; DiTullio GR Mar Environ Res; 2019 Oct; 151():104733. PubMed ID: 31351585 [TBL] [Abstract][Full Text] [Related]
15. The Response of Three Southern Ocean Phytoplankton Species to Ocean Acidification and Light Availability: A Transcriptomic Study. Beszteri S; Thoms S; Benes V; Harms L; Trimborn S Protist; 2018 Dec; 169(6):958-975. PubMed ID: 30453274 [TBL] [Abstract][Full Text] [Related]
16. Bio-optical evidence for increasing Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820 [TBL] [Abstract][Full Text] [Related]
17. Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. Kim SJ; Kim JG; Lee SH; Park SJ; Gwak JH; Jung MY; Chung WH; Yang EJ; Park J; Jung J; Hahn Y; Cho JC; Madsen EL; Rodriguez-Valera F; Hyun JH; Rhee SK Microbiome; 2019 Feb; 7(1):29. PubMed ID: 30786927 [TBL] [Abstract][Full Text] [Related]
18. Freezing, Melting, and Light Stress on the Photophysiology of Ice Algae: Ex Situ Incubation of the Ice Algal diatom Fragilariopsis cylindrus (Bacillariophyceae) Using an Ice Tank. Yoshida K; Seger A; Kennedy F; McMinn A; Suzuki K J Phycol; 2020 Oct; 56(5):1323-1338. PubMed ID: 32464687 [TBL] [Abstract][Full Text] [Related]