BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21558674)

  • 1. Evaluation of cellulolytic and hemicellulolytic abilities of fungi isolated from coffee residue and sawdust composts.
    Eida MF; Nagaoka T; Wasaki J; Kouno K
    Microbes Environ; 2011; 26(3):220-7. PubMed ID: 21558674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts.
    Fathallh Eida M; Nagaoka T; Wasaki J; Kouno K
    Microbes Environ; 2012; 27(3):226-33. PubMed ID: 22353767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.
    Fathallh Eida M; Nagaoka T; Wasaki J; Kouno K
    Microbes Environ; 2013; 28(1):71-80. PubMed ID: 23100024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promising cellulolytic fungi isolates for rice straw degradation.
    Pedraza-Zapata DC; Sánchez-Garibello AM; Quevedo-Hidalgo B; Moreno-Sarmiento N; Gutiérrez-Rojas I
    J Microbiol; 2017 Sep; 55(9):711-719. PubMed ID: 28865071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a Miniaturized Culture Screening for Cellulolytic Fungi and Their Agricultural Lignocellulosic Degradation.
    Arnthong J; Siamphan C; Chuaseeharonnachai C; Boonyuen N; Suwannarangsee S
    J Microbiol Biotechnol; 2020 Nov; 30(11):1670-1679. PubMed ID: 32876068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penicillium strains as dominant degraders in soil for coffee residue, a biological waste unsuitable for fertilization.
    Fujii K; Takeshi K
    J Appl Microbiol; 2007 Dec; 103(6):2713-20. PubMed ID: 17850298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice straw-decomposing fungi and their cellulolytic and xylanolytic enzymes.
    Lee S; Jang Y; Lee YM; Lee J; Lee H; Kim GH; Kim JJ
    J Microbiol Biotechnol; 2011 Dec; 21(12):1322-9. PubMed ID: 22210620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Screening of three straw-cellulose degrading microorganism].
    Wang H; Fan B
    Wei Sheng Wu Xue Bao; 2010 Jul; 50(7):870-5. PubMed ID: 20815232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungi isolated from olive ecosystems and screening of their potential biotechnological use.
    Baffi MA; Romo-Sánchez S; Ubeda-Iranzo J; Briones-Pérez AI
    N Biotechnol; 2012 Feb; 29(3):451-6. PubMed ID: 21689797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol.
    El-Bondkly AM; El-Gendy MM
    Antonie Van Leeuwenhoek; 2012 Feb; 101(2):331-46. PubMed ID: 21898149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Isolation and identification of a cellulose degrading fungus Y5 and its capability of degradating wheat straw].
    Yin ZW; Fan BQ; Ren P
    Huan Jing Ke Xue; 2011 Jan; 32(1):247-52. PubMed ID: 21404694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.
    Huang Y; Busk PK; Lange L
    Enzyme Microb Technol; 2015 Jun; 73-74():9-19. PubMed ID: 26002499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulolytic microbes in the Yanbaru, a subtropical rainforest with an endemic biota on Okinawa Island, Japan.
    Fujii K; Oosugi A; Sekiuchi S
    Biosci Biotechnol Biochem; 2012; 76(5):906-11. PubMed ID: 22738957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two new cellulolytic fungal species isolated from a 19
    Coronado-Ruiz C; Avendaño R; Escudero-Leyva E; Conejo-Barboza G; Chaverri P; Chavarría M
    Sci Rep; 2018 May; 8(1):7492. PubMed ID: 29748544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermotolerant hemicellulolytic and cellulolytic enzymes from Eupenicillium parvum 4-14 display high efficiency upon release of ferulic acid from wheat bran.
    Long L; Ding D; Han Z; Zhao H; Lin Q; Ding S
    J Appl Microbiol; 2016 Aug; 121(2):422-34. PubMed ID: 27171788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel sources of β-glucanase for the enzymatic degradation of schizophyllan.
    Sutivisedsak N; Leathers TD; Bischoff KM; Nunnally MS; Peterson SW
    Enzyme Microb Technol; 2013 Mar; 52(3):203-10. PubMed ID: 23410934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungi Isolated from Maize (Zea mays L.) Grains and Production of Associated Enzyme Activities.
    Abe CA; Faria CB; de Castro FF; de Souza SR; dos Santos FC; da Silva CN; Tessmann DJ; Barbosa-Tessmann IP
    Int J Mol Sci; 2015 Jul; 16(7):15328-46. PubMed ID: 26198227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].
    Gutiérrez-Rojas I; Moreno-Sarmiento N; Montoya D
    Rev Iberoam Micol; 2015; 32(1):1-12. PubMed ID: 24607657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes.
    Krogh KB; Mørkeberg A; Jørgensen H; Frisvad JC; Olsson L
    Appl Biochem Biotechnol; 2004; 113-116():389-401. PubMed ID: 15054266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.