These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21558674)

  • 21. Isolation and Screening of Cellulolytic Filamentous Fungi.
    Lübeck M; Lübeck PS
    Methods Mol Biol; 2018; 1796():37-45. PubMed ID: 29856044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of cellulolytic fungi from waste of castor (Ricinus communis L.).
    Herculano PN; Lima DM; Fernandes MJ; Neves RP; Souza-Motta CM; Porto AL
    Curr Microbiol; 2011 May; 62(5):1416-22. PubMed ID: 21279512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of lignocellulosic material and humus formation by fungi.
    Mishra MM; Singh CP; Kapoor KK; Jain MK
    Ann Microbiol (Paris); 1979; 130 A(4):481-6. PubMed ID: 507620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Use of Endoglucanase IV from Trichoderma reesei to Enhance the Hydrolytic Activity of a Cellulase Complex from the Fungus Penicillium verruculosum].
    Proskurina OV; Korotkova OG; Rozhkova AM; Kondrat'eva EG; Matys VY; Zorov IN; Koshelev AV; Okunev ON; Nemashkalov VA; Bubnova TV; Sinitsyn AP
    Prikl Biokhim Mikrobiol; 2015; 51(6):592-9. PubMed ID: 26859961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fungi-assisted phytoextraction of lead: tolerance, plant growth-promoting activities and phytoavailability.
    Manzoor M; Gul I; Kallerhoff J; Arshad M
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23788-23797. PubMed ID: 31209746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of cellulolytic soil fungi and two nova species and new medium.
    Khalid M; Yang WJ; Kishwar N; Rajput ZI; Arijo AG
    J Zhejiang Univ Sci B; 2006 Jun; 7(6):459-66. PubMed ID: 16691640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis.
    Houfani AA; Větrovský T; Baldrian P; Benallaoua S
    World J Microbiol Biotechnol; 2017 Feb; 33(2):29. PubMed ID: 28058637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions.
    van Gool MP; Toth K; Schols HA; Szakacs G; Gruppen H
    Bioresour Technol; 2012 Jun; 114():523-8. PubMed ID: 22497710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Further studies on Egyptian soil fungi: succession of sugar and osmophilic fungi in soil amended with five organic substrates.
    Shaban GM
    Mycopathologia; 1996; 136(1):33-40. PubMed ID: 9144956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Production of enzyme preparations on the basis of Penicillum canescens recombinant strains with a high ability for the hydrolysis of plant materials].
    Volkov PV; Rozhkova AM; Pravil'nikov AG; Andrianov RM; Dotsenko GS; Bekkarevich AO; Koshelev AV; Okunev ON; Zorov IN; Sinitsyn AP
    Prikl Biokhim Mikrobiol; 2012; 48(1):66-73. PubMed ID: 22567887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of hemicellulases from thermophilic fungi.
    Maijala P; Kango N; Szijarto N; Viikari L
    Antonie Van Leeuwenhoek; 2012 May; 101(4):905-17. PubMed ID: 22371150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.
    Strakowska J; Błaszczyk L; Chełkowski J
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S2-13. PubMed ID: 24532413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulose-decomposing fungi of salt marshes in Egypt.
    Abdel-Hafez SI; Maubasher AH; Abdel-Fattah HM
    Folia Microbiol (Praha); 1978; 23(1):37-44. PubMed ID: 624509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum.
    Yu EK; Deschatelets L; Louis-Seize G; Saddler JN
    Appl Environ Microbiol; 1985 Oct; 50(4):924-9. PubMed ID: 3909967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mycobiota variation in stored rice straw and its cellulolytic profile.
    El-Metwally MM; Ghoneem KM; Saber Wel-D
    Pak J Biol Sci; 2014 Sep; 17(9):1037-45. PubMed ID: 26031023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium.
    Baldrian P; Gabriel J
    FEMS Microbiol Lett; 2003 Mar; 220(2):235-40. PubMed ID: 12670686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermotolerance and Cellulolytic Activity of Fungi Isolated from Soils/Waste Materials in the Industrial Region of Nigeria.
    Akpomie OO; Okonkwo KE; Gbemre AC; Akpomie KG; Ghosh S; Ahmadi S; Banach AM
    Curr Microbiol; 2021 Jul; 78(7):2660-2671. PubMed ID: 34002268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a simple cultivation method for isolating hitherto-uncultured cellulase-producing microbes.
    Fujii K; Kuwahara A; Nakamura K; Yamashita Y
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1183-92. PubMed ID: 21656138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distributional patterns of mesophilous and thermophilous microfungi in two Bahamian soils.
    Gochenaur SE
    Mycopathologia; 1975 Dec; 57(3):155-64. PubMed ID: 1214847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.
    Dashtban M; Schraft H; Qin W
    Int J Biol Sci; 2009 Sep; 5(6):578-95. PubMed ID: 19774110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.