These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21559132)

  • 1. MEMS segmented-based adaptive optics scanning laser ophthalmoscope.
    Manzanera S; Helmbrecht MA; Kempf CJ; Roorda A
    Biomed Opt Express; 2011 Apr; 2(5):1204-17. PubMed ID: 21559132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEMS-based adaptive optics scanning laser ophthalmoscopy.
    Zhang Y; Poonja S; Roorda A
    Opt Lett; 2006 May; 31(9):1268-70. PubMed ID: 16642081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging.
    Hammer DX; Ferguson RD; Bigelow CE; Iftimia NV; Ustun TE; Burns SA
    Opt Express; 2006 Apr; 14(8):3354-67. PubMed ID: 19516480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a MEMS deformable mirror for an adaptive optics test bench.
    Wallace BP; Hampton PJ; Bradley CH; Conan R
    Opt Express; 2006 Oct; 14(22):10132-8. PubMed ID: 19529409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
    Baranec C; Dekany R
    Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.
    He Y; Deng G; Wei L; Li X; Yang J; Shi G; Zhang Y
    Adv Exp Med Biol; 2016; 923():375-383. PubMed ID: 27526166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimorph deformable mirror-based adaptive optics scanning laser ophthalmoscope for the clinical design and performance.
    Wang Y; He Y; Wei L; Yang J; Li X; Zhou H; Shi G; Zhang Y
    Neurophotonics; 2019 Oct; 6(4):041111. PubMed ID: 31720308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operation of a MOEMS Deformable Mirror in Cryo: Challenges and Results.
    Zamkotsian F; Lanzoni P; Barette R; Helmbrecht M; Marchis F; Teichman A
    Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of wave-front sampling in adaptive optics retinal imaging.
    Laslandes M; Salas M; Hitzenberger CK; Pircher M
    Biomed Opt Express; 2017 Feb; 8(2):1083-1100. PubMed ID: 28271004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the field of view of adaptive optics scanning laser ophthalmoscopy.
    Laslandes M; Salas M; Hitzenberger CK; Pircher M
    Biomed Opt Express; 2017 Nov; 8(11):4811-4826. PubMed ID: 29188083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Design of Adaptive Optics Confocal Scanning Laser Ophthalmoscope with Two Deformable Mirrors.
    Yang J; Wang Y; Rao X; Wei L; Li X; He Y
    Adv Exp Med Biol; 2017; 977():385-392. PubMed ID: 28685469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.
    Querques G; Kamami-Levy C; Georges A; Pedinielli A; Capuano V; Blanco-Garavito R; Poulon F; Souied EH
    Retina; 2016 Feb; 36(2):247-54. PubMed ID: 26200512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Control Algorithms for a MEMS-based Adaptive Optics Scanning Laser Ophthalmoscope.
    Li KY; Mishra S; Tiruveedhula P; Roorda A
    Proc Am Control Conf; 2009 Jun; 2009():3848-3853. PubMed ID: 20454552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging.
    Zawadzki RJ; Jones SM; Pilli S; Balderas-Mata S; Kim DY; Olivier SS; Werner JS
    Biomed Opt Express; 2011 Jun; 2(6):1674-86. PubMed ID: 21698028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pupil segmentation adaptive optics for invivo mouse retinal fluorescence imaging.
    Wahl DJ; Huang C; Bonora S; Jian Y; Sarunic MV
    Opt Lett; 2017 Apr; 42(7):1365-1368. PubMed ID: 28362770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system.
    Li C; Sredar N; Ivers KM; Queener H; Porter J
    Opt Express; 2010 Aug; 18(16):16671-84. PubMed ID: 20721058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy.
    Merino D; Dainty C; Bradu A; Podoleanu AG
    Opt Express; 2006 Apr; 14(8):3345-53. PubMed ID: 19516479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal adaptive optics imaging with a pyramid wavefront sensor.
    Brunner E; Shatokhina J; Shirazi MF; Drexler W; Leitgeb R; Pollreisz A; Hitzenberger CK; Ramlau R; Pircher M
    Biomed Opt Express; 2021 Oct; 12(10):5969-5990. PubMed ID: 34745716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging.
    Zawadzki RJ; Jones SM; Olivier SS; Zhao M; Bower BA; Izatt JA; Choi S; Laut S; Werner JS
    Opt Express; 2005 Oct; 13(21):8532-8546. PubMed ID: 19096728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.