BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21559340)

  • 1. Zinc finger recombinases with adaptable DNA sequence specificity.
    Proudfoot C; McPherson AL; Kolb AF; Stark WM
    PLoS One; 2011 Apr; 6(4):e19537. PubMed ID: 21559340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of programmable integrases.
    Gordley RM; Gersbach CA; Barbas CF
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5053-8. PubMed ID: 19282480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase.
    Gersbach CA; Gaj T; Gordley RM; Mercer AC; Barbas CF
    Nucleic Acids Res; 2011 Sep; 39(17):7868-78. PubMed ID: 21653554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows.
    Liu X; Wang Y; Guo W; Chang B; Liu J; Guo Z; Quan F; Zhang Y
    Nat Commun; 2013; 4():2565. PubMed ID: 24121612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays.
    Maeder ML; Thibodeau-Beganny S; Sander JD; Voytas DF; Joung JK
    Nat Protoc; 2009; 4(10):1471-501. PubMed ID: 19798082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing.
    Pandey S; Gao XD; Krasnow NA; McElroy A; Tao YA; Duby JE; Steinbeck BJ; McCreary J; Pierce SE; Tolar J; Meissner TB; Chaikof EL; Osborn MJ; Liu DR
    Nat Biomed Eng; 2024 Jun; ():. PubMed ID: 38858586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for topological regulation of Tn3 resolvase.
    Montaño SP; Rowland SJ; Fuller JR; Burke ME; MacDonald AI; Boocock MR; Stark WM; Rice PA
    Nucleic Acids Res; 2023 Feb; 51(3):1001-1018. PubMed ID: 36100255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of ϕC31 integrase-mediated site-specific recombination by protein trans-splicing.
    Olorunniji FJ; Lawson-Williams M; McPherson AL; Paget JE; Stark WM; Rosser SJ
    Nucleic Acids Res; 2019 Dec; 47(21):11452-11460. PubMed ID: 31667500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering altered protein-DNA recognition specificity.
    Bogdanove AJ; Bohm A; Miller JC; Morgan RD; Stoddard BL
    Nucleic Acids Res; 2018 Jun; 46(10):4845-4871. PubMed ID: 29718463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of serine integrase recombination directionality by fusion with the directionality factor.
    Olorunniji FJ; McPherson AL; Rosser SJ; Smith MCM; Colloms SD; Stark WM
    Nucleic Acids Res; 2017 Aug; 45(14):8635-8645. PubMed ID: 28666339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redesigning Recombinase Specificity for Safe Harbor Sites in the Human Genome.
    Wallen MC; Gaj T; Barbas CF
    PLoS One; 2015; 10(9):e0139123. PubMed ID: 26414179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic survey of the Cys2His2 zinc finger DNA-binding landscape.
    Persikov AV; Wetzel JL; Rowland EF; Oakes BL; Xu DJ; Singh M; Noyes MB
    Nucleic Acids Res; 2015 Feb; 43(3):1965-84. PubMed ID: 25593323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protein-RNA specificity code enables targeted activation of an endogenous human transcript.
    Campbell ZT; Valley CT; Wickens M
    Nat Struct Mol Biol; 2014 Aug; 21(8):732-8. PubMed ID: 24997599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign.
    Gaj T; Sirk SJ; Tingle RD; Mercer AC; Wallen MC; Barbas CF
    J Am Chem Soc; 2014 Apr; 136(13):5047-56. PubMed ID: 24611715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants.
    Sirk SJ; Gaj T; Jonsson A; Mercer AC; Barbas CF
    Nucleic Acids Res; 2014 Apr; 42(7):4755-66. PubMed ID: 24452803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep sequencing of large library selections allows computational discovery of diverse sets of zinc fingers that bind common targets.
    Persikov AV; Rowland EF; Oakes BL; Singh M; Noyes MB
    Nucleic Acids Res; 2014 Feb; 42(3):1497-508. PubMed ID: 24214968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.
    Gaj T; Sirk SJ; Barbas CF
    Biotechnol Bioeng; 2014 Jan; 111(1):1-15. PubMed ID: 23982993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact designer TALENs for efficient genome engineering.
    Beurdeley M; Bietz F; Li J; Thomas S; Stoddard T; Juillerat A; Zhang F; Voytas DF; Duchateau P; Silva GH
    Nat Commun; 2013; 4():1762. PubMed ID: 23612303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a zinc binding site into the de novo designed protein DS119 with a βαβ structure.
    Zhu C; Zhang C; Liang H; Lai L
    Protein Cell; 2011 Dec; 2(12):1006-13. PubMed ID: 22231358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel zinc-finger nuclease platform with a sequence-specific cleavage module.
    Schierling B; Dannemann N; Gabsalilow L; Wende W; Cathomen T; Pingoud A
    Nucleic Acids Res; 2012 Mar; 40(6):2623-38. PubMed ID: 22135304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.