These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21559408)

  • 1. External control of the GAL network in S. cerevisiae: a view from control theory.
    Yang R; Lenaghan SC; Wikswo JP; Zhang M
    PLoS One; 2011 Apr; 6(4):e19353. PubMed ID: 21559408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability analysis of the GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis.
    Kulkarni VV; Kareenhalli V; Malakar P; Pao LY; Safonov MG; Viswanathan GA
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S43. PubMed ID: 20122217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a model of the GAL regulatory system via robustness analysis of its bistability characteristics.
    Salerno L; Cosentino C; Merola A; Bates DG; Amato F
    BMC Syst Biol; 2013 May; 7():39. PubMed ID: 23680044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural bistability of the GAL regulatory network and characterization of its domains of attraction.
    Cosentino C; Salerno L; Passanti A; Merola A; Bates DG; Amato F
    J Comput Biol; 2012 Feb; 19(2):148-62. PubMed ID: 22300317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae.
    Apostu R; Mackey MC
    J Theor Biol; 2012 Jan; 293():219-35. PubMed ID: 22024631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis.
    Rubio-Texeira M
    FEMS Yeast Res; 2005 Dec; 5(12):1115-28. PubMed ID: 16014343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast.
    Ramsey SA; Smith JJ; Orrell D; Marelli M; Petersen TW; de Atauri P; Bolouri H; Aitchison JD
    Nat Genet; 2006 Sep; 38(9):1082-7. PubMed ID: 16936734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains.
    Pannala VR; Hazarika SJ; Bhat PJ; Bhartiya S; Venkatesh KV
    IET Syst Biol; 2012 Apr; 6(2):44-53. PubMed ID: 22519357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.
    Pannala VR; Bhartiya S; Venkatesh KV
    FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    J Biol Chem; 2006 May; 281(19):13485-13492. PubMed ID: 16524886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose.
    Malakar P; Venkatesh KV
    FEMS Yeast Res; 2014 Mar; 14(2):346-56. PubMed ID: 24206532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional rewiring over evolutionary timescales changes quantitative and qualitative properties of gene expression.
    Dalal CK; Zuleta IA; Mitchell KF; Andes DR; El-Samad H; Johnson AD
    Elife; 2016 Sep; 5():. PubMed ID: 27614020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network.
    Ostergaard S; Olsson L; Johnston M; Nielsen J
    Nat Biotechnol; 2000 Dec; 18(12):1283-6. PubMed ID: 11101808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A steady-state modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae.
    Verma M; Bhat PJ; Bhartiya S; Venkatesh KV
    Eur J Biochem; 2004 Oct; 271(20):4064-74. PubMed ID: 15479235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient responses and adaptation to steady state in a eukaryotic gene regulation system.
    Braun E; Brenner N
    Phys Biol; 2004 Jun; 1(1-2):67-76. PubMed ID: 16204824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation in the yeast GAL gene family: a complex genetic network.
    Lohr D; Venkov P; Zlatanova J
    FASEB J; 1995 Jun; 9(9):777-87. PubMed ID: 7601342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches.
    Cantone I; Marucci L; Iorio F; Ricci MA; Belcastro V; Bansal M; Santini S; di Bernardo M; di Bernardo D; Cosma MP
    Cell; 2009 Apr; 137(1):172-81. PubMed ID: 19327819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems biology of GAL regulon in Saccharomyces cerevisiae.
    Pannala VR; Bhat PJ; Bhartiya S; Venkatesh KV
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(1):98-106. PubMed ID: 20836013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    AvendaƱo MS; Leidy C; Pedraza JM
    Nat Commun; 2013; 4():2605. PubMed ID: 24189549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.