BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21559491)

  • 1. Computational integration of homolog and pathway gene module expression reveals general stemness signatures.
    Koeva M; Forsberg EC; Stuart JM
    PLoS One; 2011 Apr; 6(4):e18968. PubMed ID: 21559491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering monotonic stemness marker genes from time-series stem cell microarray data.
    Wang HW; Sun HJ; Chang TY; Lo HH; Cheng WC; Tseng GC; Lin CT; Chang SJ; Pal N; Chung IF
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S2. PubMed ID: 25708300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Stemness Gene Signatures Reveals Core Functional Modules of Stem Cells and Potential Novel Stemness Genes.
    Barata T; Duarte I; Futschik ME
    Genes (Basel); 2023 Mar; 14(3):. PubMed ID: 36981016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A meta-analysis of microarray gene expression in mouse stem cells: redefining stemness.
    Edwards YJ; Bryson K; Jones DT
    PLoS One; 2008 Jul; 3(7):e2712. PubMed ID: 18628962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells.
    Khan MI; Czarnecka AM; Lewicki S; Helbrecht I; Brodaczewska K; Koch I; Zdanowski R; Król M; Szczylik C
    PLoS One; 2016; 11(11):e0165718. PubMed ID: 27812180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene set-based module discovery in the breast cancer transcriptome.
    Niida A; Smith AD; Imoto S; Aburatani H; Zhang MQ; Akiyama T
    BMC Bioinformatics; 2009 Feb; 10():71. PubMed ID: 19243633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification.
    Zhang W; Edwards A; Fan W; Zhu D; Zhang K
    BMC Bioinformatics; 2010 Jun; 11():338. PubMed ID: 20565989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression.
    Shi Z; Derow CK; Zhang B
    BMC Syst Biol; 2010 May; 4():74. PubMed ID: 20507583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors.
    Fan J; Wei Q; Liao J; Zou Y; Song D; Xiong D; Ma C; Hu X; Qu X; Chen L; Li L; Yu Y; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Lei J; Li Y; Zhang W; Haydon RC; Luu HH; Huang A; He TC; Tang H
    Oncotarget; 2017 Apr; 8(16):27105-27119. PubMed ID: 28404920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large scale transcriptome data integration across multiple tissues to decipher stem cell signatures.
    Bidaut G; Stoeckert CJ
    Methods Enzymol; 2009; 467():229-245. PubMed ID: 19897095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of regulatory modules by co-clustering latent variable models: stem cell differentiation.
    Joung JG; Shin D; Seong RH; Zhang BT
    Bioinformatics; 2006 Aug; 22(16):2005-11. PubMed ID: 16899491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of novel stem cell markers using gap analysis of gene expression data.
    Krzyzanowski PM; Andrade-Navarro MA
    Genome Biol; 2007; 8(9):R193. PubMed ID: 17875203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of cis-Regulatory Elements in Gene Co-expression Networks in Cancer.
    Triska M; Ivliev A; Nikolsky Y; Tatarinova TV
    Methods Mol Biol; 2017; 1613():291-310. PubMed ID: 28849565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering biological progression underlying microarray samples.
    Qiu P; Gentles AJ; Plevritis SK
    PLoS Comput Biol; 2011 Apr; 7(4):e1001123. PubMed ID: 21533210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Scalable Permutation Approach Reveals Replication and Preservation Patterns of Network Modules in Large Datasets.
    Ritchie SC; Watts S; Fearnley LG; Holt KE; Abraham G; Inouye M
    Cell Syst; 2016 Jul; 3(1):71-82. PubMed ID: 27467248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying stem cell gene expression patterns and phenotypic networks with AutoSOME.
    Newman AM; Cooper JB
    Methods Mol Biol; 2014; 1150():115-30. PubMed ID: 24743993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the mechanisms underlying cell-fate decision-making during stem cell differentiation by random circuit perturbation.
    Huang B; Lu M; Galbraith M; Levine H; Onuchic JN; Jia D
    J R Soc Interface; 2020 Aug; 17(169):20200500. PubMed ID: 32781932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Module map of stem cell genes guides creation of epithelial cancer stem cells.
    Wong DJ; Liu H; Ridky TW; Cassarino D; Segal E; Chang HY
    Cell Stem Cell; 2008 Apr; 2(4):333-44. PubMed ID: 18397753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scalable approach for discovering conserved active subnetworks across species.
    Deshpande R; Sharma S; Verfaillie CM; Hu WS; Myers CL
    PLoS Comput Biol; 2010 Dec; 6(12):e1001028. PubMed ID: 21170309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Module network inference from a cancer gene expression data set identifies microRNA regulated modules.
    Bonnet E; Tatari M; Joshi A; Michoel T; Marchal K; Berx G; Van de Peer Y
    PLoS One; 2010 Apr; 5(4):e10162. PubMed ID: 20418949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.