These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 21559968)
1. Mechanical properties of the porcine growth plate vary with developmental stage. Wosu R; Sergerie K; Lévesque M; Villemure I Biomech Model Mechanobiol; 2012 Mar; 11(3-4):303-12. PubMed ID: 21559968 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. Sergerie K; Lacoursière MO; Lévesque M; Villemure I J Biomech; 2009 Mar; 42(4):510-6. PubMed ID: 19185303 [TBL] [Abstract][Full Text] [Related]
3. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization. Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833 [TBL] [Abstract][Full Text] [Related]
4. Compressive stress-relaxation behavior of bovine growth plate may be described by the nonlinear biphasic theory. Cohen B; Chorney GS; Phillips DP; Dick HM; Mow VC J Orthop Res; 1994 Nov; 12(6):804-13. PubMed ID: 7983556 [TBL] [Abstract][Full Text] [Related]
5. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. Cohen B; Lai WM; Mow VC J Biomech Eng; 1998 Aug; 120(4):491-6. PubMed ID: 10412420 [TBL] [Abstract][Full Text] [Related]
6. An experimental and theoretical analysis of unconfined compression of corneal stroma. Hatami-Marbini H; Etebu E J Biomech; 2013 Jun; 46(10):1752-8. PubMed ID: 23664313 [TBL] [Abstract][Full Text] [Related]
7. Rate dependent biomechanical properties of corneal stroma in unconfined compression. Hatami-Marbini H; Etebu E Biorheology; 2013; 50(3-4):133-47. PubMed ID: 23863279 [TBL] [Abstract][Full Text] [Related]
8. Effect of cold storage and freezing on the biomechanical properties of swine growth plate explants. Ménard AL; Soulisse C; Raymond P; Londono I; Villemure I J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24337235 [TBL] [Abstract][Full Text] [Related]
9. Growth plate explants respond differently to in vitro static and dynamic loadings. Sergerie K; Parent S; Beauchemin PF; Londoño I; Moldovan F; Villemure I J Orthop Res; 2011 Apr; 29(4):473-80. PubMed ID: 21337387 [TBL] [Abstract][Full Text] [Related]
10. A study on the mechanical properties of beagle femoral head using the digital speckle correlation method. Wang Q; Xie H; Tang P; Yao Q; Huang P; Chen P; Huang F Med Eng Phys; 2009 Dec; 31(10):1228-34. PubMed ID: 19713145 [TBL] [Abstract][Full Text] [Related]
11. Non-uniform strain distribution within rat cartilaginous growth plate under uniaxial compression. Villemure I; Cloutier L; Matyas JR; Duncan NA J Biomech; 2007; 40(1):149-56. PubMed ID: 16378613 [TBL] [Abstract][Full Text] [Related]
12. Tissue and cellular morphological changes in growth plate explants under compression. Amini S; Veilleux D; Villemure I J Biomech; 2010 Sep; 43(13):2582-8. PubMed ID: 20627250 [TBL] [Abstract][Full Text] [Related]
13. Mechanical behavior of the lamb growth plate in response to asymmetrical loading: a model for Blount disease. Grover JP; Vanderby R; Leiferman EM; Wilsman NJ; Noonan KJ J Pediatr Orthop; 2007; 27(5):485-92. PubMed ID: 17585254 [TBL] [Abstract][Full Text] [Related]
14. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study. Julkunen P; Korhonen RK; Herzog W; Jurvelin JS Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536 [TBL] [Abstract][Full Text] [Related]
15. Hydration dependent biomechanical properties of the corneal stroma. Hatami-Marbini H; Etebu E Exp Eye Res; 2013 Nov; 116():47-54. PubMed ID: 23891861 [TBL] [Abstract][Full Text] [Related]
16. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]
17. Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during postnatal growth. Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA Connect Tissue Res; 2005; 46(4-5):211-9. PubMed ID: 16546824 [TBL] [Abstract][Full Text] [Related]
18. A new method to determine rate-dependent material parameters of corneal extracellular matrix. Hatami-Marbini H; Etebu E Ann Biomed Eng; 2013 Nov; 41(11):2399-408. PubMed ID: 23872935 [TBL] [Abstract][Full Text] [Related]
19. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related]
20. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Liao J; Yang L; Grashow J; Sacks MS J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]