BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21560128)

  • 21. Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices.
    Ghori MU; Ginting G; Smith AM; Conway BR
    Int J Pharm; 2014 Apr; 465(1-2):405-12. PubMed ID: 24560637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the drug solubility and rush ageing on drug release performance of various model drugs from the modified release polyethylene oxide matrix tablets.
    Shojaee S; Nokhodchi A; Maniruzzaman M
    Drug Deliv Transl Res; 2017 Feb; 7(1):111-124. PubMed ID: 27873080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of processing parameters and formulation factors on the drug release from tablets powder-coated with Eudragit L 100-55.
    Sauer D; Zheng W; Coots LB; McGinity JW
    Eur J Pharm Biopharm; 2007 Sep; 67(2):464-75. PubMed ID: 17451929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study of dissolution characteristics of polymeric and wax granulations of theophylline and their tablets.
    Uhumwangho MU; Okor RS
    Pak J Pharm Sci; 2008 Jul; 21(3):230-6. PubMed ID: 18614417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A discriminatory intrinsic dissolution study using UV area imaging analysis to gain additional insights into the dissolution behaviour of active pharmaceutical ingredients.
    Hulse WL; Gray J; Forbes RT
    Int J Pharm; 2012 Sep; 434(1-2):133-9. PubMed ID: 22626886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ measurement of solvent-mediated phase transformations during dissolution testing.
    Aaltonen J; Heinänen P; Peltonen L; Kortejärvi H; Tanninen VP; Christiansen L; Hirvonen J; Yliruusi J; Rantanen J
    J Pharm Sci; 2006 Dec; 95(12):2730-7. PubMed ID: 16892206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix.
    Karavas E; Georgarakis M; Docoslis A; Bikiaris D
    Int J Pharm; 2007 Aug; 340(1-2):76-83. PubMed ID: 17478064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments.
    Güres S; Siepmann F; Siepmann J; Kleinebudde P
    Eur J Pharm Biopharm; 2012 Jan; 80(1):122-9. PubMed ID: 22008146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confocal microscopy for the elucidation of mass transport mechanisms involved in protein release from lipid-based matrices.
    Koennings S; Tessmar J; Blunk T; Göpferich A
    Pharm Res; 2007 Jul; 24(7):1325-35. PubMed ID: 17457662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticle formation and growth during in vitro dissolution of ketoconazole solid dispersion.
    Kanaujia P; Lau G; Ng WK; Widjaja E; Hanefeld A; Fischbach M; Maio M; Tan RB
    J Pharm Sci; 2011 Jul; 100(7):2876-85. PubMed ID: 21290385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration.
    Čerpnjak K; Zvonar A; Vrečer F; Gašperlin M
    Int J Pharm; 2015 May; 485(1-2):215-28. PubMed ID: 25772420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a HPMC-based controlled release formulation with hot melt extrusion (HME).
    Ma D; Djemai A; Gendron CM; Xi H; Smith M; Kogan J; Li L
    Drug Dev Ind Pharm; 2013 Jul; 39(7):1070-83. PubMed ID: 22803806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of an aliphatic polyurethane as a microsphere matrix for sustained theophylline delivery.
    Subhaga CS; Ravi KG; Sunny MC; Jayakrishnan A
    J Microencapsul; 1995; 12(6):617-25. PubMed ID: 8558384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing pseudopolymorphic transitions in pharmaceutical solids using Raman spectroscopy: hydration and dehydration of theophylline.
    Amado AM; Nolasco MM; Ribeiro-Claro PJ
    J Pharm Sci; 2007 May; 96(5):1366-79. PubMed ID: 17455358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of channeling agents on the release pattern of theophylline from kollidon SR based matrix tablets.
    Ibn Razzak MS; Khan F; Hossain M; Khan MZ; Azad MA; Reza MS
    Pak J Pharm Sci; 2009 Jul; 22(3):303-7. PubMed ID: 19553179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real time Raman imaging to understand dissolution performance of amorphous solid dispersions.
    Tres F; Treacher K; Booth J; Hughes LP; Wren SA; Aylott JW; Burley JC
    J Control Release; 2014 Aug; 188():53-60. PubMed ID: 24910191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissolution from solid lipid extrudates containing release modifiers.
    Güres S; Kleinebudde P
    Int J Pharm; 2011 Jun; 412(1-2):77-84. PubMed ID: 21515350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extended release of a large amount of highly water-soluble diltiazem hydrochloride by utilizing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG) matrix tablets.
    Kojima H; Yoshihara K; Sawada T; Kondo H; Sako K
    Eur J Pharm Biopharm; 2008 Oct; 70(2):556-62. PubMed ID: 18606223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation and comparison of dissolution data derived from different modified release dosage forms: an alternative method.
    Pillay V; Fassihi R
    J Control Release; 1998 Oct; 55(1):45-55. PubMed ID: 9795013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: drug release and fronts movement kinetics.
    Marinich JA; Ferrero C; Jiménez-Castellanos MR
    Eur J Pharm Biopharm; 2012 Apr; 80(3):674-81. PubMed ID: 22210473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.